1、多项式与多项式相乘1教学目标知识与技能在具体情况中,了解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算.过程与方法1.经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力.2.体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力.情感、态度与价值观充分调动学生学习的积极性、主动性.重点难点重点单项式与多项式的乘法运算.难点推测整式乘法的运算法则.教学过程一、复习旧知,导入新课1.单项式与单项式相乘法则?2.完成下列各题.(1)2x2(-4xy)=();(2)(-2x2)(-3xy)=();(3)(-ab)(ab2)=().二、师生互动,探
2、究新知1.5(7-2+3)=5+5+5依据是什么?将题中数转换成字母A.B.C.d,则a(b+c+d)=?【教师活动】你能将算出的结果用长方形的面积验证吗?如图2.在教师引导下,学生总结法则,并用语言叙述,教师订正语言准确性.板书:单项式与多项式相乘,只要将单项式分别乘以多项式的各项, 再将所得的积相加.即a(b+c+d)=ab+ac+ad三、随堂练习,巩固新知1.2a(4a-2b)=.2.4x2(5x2-3x+1)=.3.(4x2-6xy2)(-xy)=.4.若一个长方体的长、宽、高分别为3x-4,2x和x,则它的体积是.【答案】1.8a2-4ab2.20x4-12x3+4x23.-x3y+
3、2x2y34.6x3-8x2四、典例精讲,拓展新知【例】先化简,再求值.(1)3x2(2x2-x+1)-x(3x3-4x2+2x),其中x=-1;(2)x2(3-x)+x(x2-2x)+1,其中x=2.【分析】先利用单项式乘多项式的法则化简,再代入求值.【答案】(1)化简得3x4+x3+x2,当x=-1时,原式=3.(2)化简得x2+1,当x=2时,原式=5.【教学说明】教师强调运用法则做到一步一查确保计算准确无误,这类题应先化简,再求值.五、运用新知,深化理解先化简,再求值(1)3x(2x+y)-2x(x-y),其中x=1,y=1/5(2)已知x2-3=0,求x(x2-x)-x2(5+x)-
4、9的值.【答案】(1)4x2+5xy,5;(2)-x2-24,-27.【教师说明】(2)中宜将x2视为一个整体.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.1.指导学生总结本节课的知识点,学习过程等的自我评价.2.多项式单项式的积的项数、符号(结合去括号法则)及不能漏乘等注意事项给予强调.3.要善于在图形变化中发现规律,能熟练地对整式加减进行运算.教学反思本节课法则推导利用乘法的分配律,从数类比到字母,学生亲切易懂,体现用字母代替数的思想,再让学生用长方形面积验证,培养思维严谨性,注重数形结合思想.运用新知中,第(2)题将x2看作一个整体,提高计算灵活性.本课计算量有所加大,如何让学生计算更准确,除熟练运用法则外,还应对学生计算作心理指导.如做一步查一步,不要做完再检查,可通过演算比赛调动计算情趣.