1、5.1确定位置一教学目标(一)教学知识点1.量出图上距离,根据比例尺会计算实际距离.2.重点体会极坐标思想和直角坐标思想,并能解决一些简单的问题.(二)能力训练要求1.训练学生的识图能力.2.培养学生的合作能力,猜想能力.(三)情感与价值观要求1.由大家感兴趣的图形诱发学生学习数学的积极性,使学生能十分投入到数学活动中.2.通过本节课的学习,使学生能掌握确定位置的方法,并能灵活地解决有关问题.使学生认识到数学与人类生活的密切联系,更增强他们学习数学的决心.二教学重点会根据已知的条件,把一些物体或棋子所处的位置能正确表示出来.三教学难点分析已知条件中的数据找规律.四教学方法老师、学生讨论法.五教
2、具准备投影片五张:第一张:做一做(记作5.1 A);第二张:例题(记作5.1 B);第三张:试一试(记作5.1 C);第四张:补充练习(记作5.1 D);第五张:补充练习(记作5.1 E).六教学过程.创设问题情境,导入新课师在上节课我们学习了确定位置的必要性,以及确定位置的方式的多样性,并能就实际生活中的问题进行解决,下面我们根据题目的要求看应怎样确定图中的一些点的位置.如下图若用(0,0)表示A点的位置,用(1,0)表示B点的位置,用(1,2)表示F点的位置,则剩下的点的位置应如何表示呢?这就是本节课要研究的问题.讲授新课师在上面的田字中,大家先分析一下已知的三个点A(0,0),B(1,0
3、),F(1,2).其中的数字表示什么,然后找出规律,其他的点就能根据规律去求了.各小组进行讨论,然后回答规律是什么.生甲A(0,0)中0,0表示在水平方向和竖直方向上的起点;B(1,0)中的1表示在水平方向上距A点的距离,0表示在竖直方向上距A点的距离;F(1,2)中的1表示在水平方向上距A点的距离为1,在竖直方向上距A点的距离为2.生乙在水平方向上的距离排在前,竖直方向上的距离排在后.师大家讨论的结果基本正确,下面请同学们把其他点表示出来.生C(2,0),D(2,1),E(2,2),G(0,2),H(0,1)1.做一做投影片(5.1 A)下图是用围棋中的黑颜色的若干枚棋子在方格纸上摆出的两幅
4、图案,如果用(0,0)表示A点的位置,用(2,1)表示B点的位置.图1图2(1)图1中五角星五个顶点的位置如何表示?(2)图2中的C、D、E、F、G五枚棋子如何表示?(3)图2中(6,1),(10,8)位置上的棋子分别是哪一枚?师请同学们讨论后回答.生(1)C(4,2),D(10,2),E(11,7),F(7,10),G(3,7).(2)C(5,1),D(11,1),E(13,7),F(9,10),G(4,5).(3)(6,1)位置上的棋子是H, (10,8)位置上的棋子是I2.例题讲解投影片(5.1 B)下图是某学校的平面示意图,借助刻度尺、量角器,解决如下问题:(1)教学楼位于校门的北偏东
5、多少度的方向上?到校门的图上距离约为多少厘米?实际距离呢?(2)某楼位于校门的南偏东75的方向,到校门的实际距离约为240米,说出这一地点的名称.(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置应如何表示?(10,5)表示哪个地点的位置?师请大家按小组进行,然后进行交流.生(1)教学楼位于校门的北偏东52的方向上,图上距离约为2.5cm,实际距离为:2.510000=250(米)师(2)位于校门的南偏东75的方向上,到校门的实际距离约为240米的地点是实验楼.生(3)如果用(2,5)表示图上校门的位置,那么图书馆的位置表示为(2,9),(10,5)表示旗杆的位置.师能否把剩下的两个地
6、点也表示出来呢?生教学楼的位置表示为(8,10),实验楼的位置表示为(9,3).师请大家回忆一下,在这个例题中用了几种确定位置的方法.生用了两种,一种是用角度和距离来表示;另一种是用在水平方向和竖直方向上到0点的距离来表示.师大家的观察能力和语言表达能力都非常的棒,现在再总结一下,这两种表示方法有何共同点和不同点?生共同点是都用两个正数表示;不同点是一种用两个距离来表示,一种用一个角度和一个距离来表示.师大家同意这位同学的说法吗?生我同意他说的不同点,不同意他说的共同点.我觉得共同点是都用两个数据表示,因为在上一节课中我们就讨论过这个问题,在平面上确定位置要用两个数据,在空间中确定位置,需要三
7、个数据.师这位同学不仅善于总结,而且还能把前后知识联系起来,使所学知识串在一起,把新问题转化为用旧知识来解决,这是数学中的一种重要的思想转化思想.通过刚才的讨论得出的结论来解决下面的问题就显得非常的简单了,不信你试一试.3.想一想仅有一个数据(如方位角或距离),能准确确定教学楼的位置吗?生不能,因为在平面上确定位置需要两个数据.师如果用一个数据会出现什么情况呢?生如果用一个方位角来确定,已知教学楼位于校门的北偏东52的方向上,如下图.北偏东52的方向上有无数点,究竟是A点,还是B点,C点呢?或者是其他的点不能确定.所以只用一个方位角不能确定教学楼的位置.如果只用一个数据距离来确定,到校门的图上
8、距离为2.5cm的地点很多.如下图中的A、B、C点等,满足条件的点有无数个,所以只用距离这一个数据是不能确定教学楼的位置的.只有把这两个数据结合起来才能惟一地确定一个点.4.试一试投影片(5.1 C)“怪兽吃豆豆”是一种计算机游戏,如右图中的标志表示“怪兽”先后经过的几个位置.如果用(1,2)表示“怪兽”按图中箭头所指路线经过的第3个位置,那么你能用同样的方法表示出图中“怪兽”经过的其他几个位置吗?生其他几个位置依次是:(0,0),(1,0),(3,2),(3,4),(5,4),(5,6),(7,6),(7,8).课堂练习(一)随堂练习如下图,点A表示3街与5大道的十字路口,点B表示5街与3大
9、道的十字路口,如果用(3,5)(4,5)(5,5)(5,4)(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?生(1)(3,5)(4,5)(4,4)(5,4)(5,3);(2)(3,5)(4,5)(4,4)(4,3)(5,3);(3)(3,5)(3,4)(4,4)(5,4)(5,3);(4)(3,5)(3,4)(4,4)(4,3)(5,3);(5)(3,5)(3,4)(3,3)(4,3)(5,3).师大家看就这几种路径吗?生还有呢.如(3,5)(3,4)(3,3)(3,2)(4,2)(5,2)(5,3);(6)(3,5)(3,4)(3,3)(4,3)(4,2)
10、(5,2)(5,3)师请大家认真分析题目的要求,只要由A到B的路径都可以,并没有要求路的远近和是否绕远.因此这位同学的走法也可以,那么还有没有其他走法呢?生有,如(3,5)(3,4)(3,3)(3,2)(3,1)(4,1)(5,1)(5,2)(5,3).师像这样绕远或回头的走法还很多,请大家课后继续进行查找,下面看第2题.下图是某个城市主要街道和建筑物的示意图,“市民广场”是整个城市的中心,试设计描述这个城市主要建筑物位置的一种方法,并与同伴交流.师大家应先决定用哪一种方法来表示?生用方位角与距离这两个数据来表示.建筑物A位于“市民广场”的北偏东30的方向上,距“市民广场”的图上距离为 1cm
11、.建筑物B位于“市民广场”的北偏西20的方向上,距“市民广场”的图上距离为 1.6cm.建筑物C位于“市民广场”的西偏北10的方向上,距“市民广场”的图上距离为 1.5cm.建筑物D位于“市民广场”的南偏西40的方向上,距“市民广场”的图上距离为 1.4cm.建筑物E位于“市民广场”的东偏南5的方向上,距“市民广场”的图上距离为 1.8cm.(二)补充练习投影片(5.1 D)1.如下图,四边形ABCD是正方形,四边形EFGH,四边形IJKL也是正方形.且若用(0,0)表示A点的位置,(4,0)表示F点的位置,那么图中的其他点应如何表示?生B(8,0),C(8,8),D(0,8),E(0,4),
12、G(8,4),H(4,8),I(2,6),J(2,2),K(6,2),L(6,6),O(4,4).投影片(5.1 E)2.下图是活动菱形衣帽架,若用(3,1)表示A点的位置,其他点的位置应如何表示呢?师请大家思考后回答.生B (7,1),C(11,1),D(13,4),E(11,7),F(9,4),G(7,7),H(5,4),I(3,7),J(1,4).师请大家回忆一下本节课学了几种表示位置的方法?.课时小结本节课通过对例题的学习,使学生能根据条件的不同选取适当的方法来确定位置,主要体现和运用了“极坐标”思想和“直角坐标”思想,同时培养了学生的探索能力和合作精神.课后作业习题5.1.活动与探究
13、船只定位人们有时用两个角度确定海上航行船只的位置.如下图,对于在大海中航行的船只A,海岸线上的B,C两个观测点只要同时观测到船只相对于每个观测点的方位角,即可准确确定这艘船只的位置.如上图所示,根据B、C两个观测点所测得的方位角即可确定船只的方位,这是因为,对于固定的点B、C,船只A既在射线BA上,又在射线CA上,两条射线的交点就是这艘船的位置.这是一种确定位置的方法,其依据是“已知三角形的两个内角及其夹边,这个三角形是确定的”.这里的定位仍需两个数据.除此之外,还可用“极坐标”思想来定位,即用方位角和距离来定位.也可用“直角坐标”思想来定位.七板书设计5.1 确定位置一、做一做(用坐标表示点的位置)二、例题讲解三、想一想(仅有一个数据能确定位置吗?)四、试一试(怪兽吃豆豆)五、课堂练习六、课时小结七、课后作业