收藏 分销(赏)

教与学 新教案九年级数学下册 27.3 位似图形的坐标变化规律(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc

上传人:s4****5z 文档编号:7416969 上传时间:2025-01-03 格式:DOC 页数:11 大小:1.24MB
下载 相关 举报
教与学 新教案九年级数学下册 27.3 位似图形的坐标变化规律(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc_第1页
第1页 / 共11页
教与学 新教案九年级数学下册 27.3 位似图形的坐标变化规律(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc_第2页
第2页 / 共11页
教与学 新教案九年级数学下册 27.3 位似图形的坐标变化规律(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc_第3页
第3页 / 共11页
教与学 新教案九年级数学下册 27.3 位似图形的坐标变化规律(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc_第4页
第4页 / 共11页
教与学 新教案九年级数学下册 27.3 位似图形的坐标变化规律(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、位似图形的坐标变化规律典案一教学设计课题第2课时位似图形的坐标变化规律授课人教学目标知识技能1.掌握平面直角坐标系下的位似图形的点的坐标变化特点;2.能够利用这个变化规律画出平面直角坐标系下的位似图形数学思考使学生经历对位似图形的观察、画图、分析、交流、体验,探索得出数学结论的过程问题解决经历对平面直角坐标系下的位似图形的点的坐标的变化规律的探究和应用的过程,进一步提高学生分析解决问题的能力情感态度通过经历对位似图形的认识、操作、归纳等过程,激发学生探究问题的兴趣,得到解决问题的成功体验,培养学生之间的交流合作意识.教学重点用图形中的点的坐标变化来表示图形的位似变换教学难点对平面直角坐标系下位

2、似图形的点的坐标变化规律的归纳授课类型新授课课时教具多媒体 (续表)教学活动教学步骤师生活动设计意图回顾提出问题:1.我们之前都学习过哪几类图形的变换?(平移、轴对称、旋转或中心对称)2.用坐标表示变换时,分别具有什么规律?3.位似图形有什么性质,其作图步骤是什么?回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境导入新课【课堂引入】 如图27356,在平面直角坐标系中,有两点A(6,3),B(6,0)以原点O为位似中心,相似比为,把线段AB缩小观察对应点之间坐标的变化, 图27356你有什么发现?利用解答问题的形式,探寻点的坐标规律,能提高学生的学习兴趣.活动二:实践探究交流新知

3、1.探究位似图形的坐标变化规律:师生活动:对于活动一中提出的问题,先由学生作图,写出变换后A,B的对应点的坐标,再认真观察对应点之间坐标的变化.位似变换后点A,B的对应点为A(2,1),B(2,0)或A(2,1),B(2,0).问题:如图27357,AOC三个顶点的坐标分别为A(2,4),O(0,0),C(5,0),以点O 图27357为位似中心,相似比为2,将AOC放大,观察对应顶点坐标的变化,你有什么发现?2.总结位似图形的坐标变化规律:师生活动:教师组织学生以小组的形式进行探究,得到位似变换中对应点的坐标变化规律,教师多媒体演示,对表现优秀的学生进行表扬.根据前面两个例题的探究,师生共同

4、总结:在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图的相似比为k,那么与原图形上的点(x,y)对应的位似图形上的点的坐标为(kx,ky)或(kx,ky).在平面直角坐标系中,用图形的坐标变化来表示图形的位似变换的关键是确定位似图形各个顶点的坐标,而不同方法得到的图形坐标是不同的.1.通过对问题的探究,提高学生的观察能力、分析解决问题的能力,加强小组活动的效果,培养学生的作图能力和语言表达能力,拓宽学生的思维,让学生总结解决问题的方法,使学生获得成功的体验,增强学习的信心. (续表)活动二:实践探究交流新知3.探究四种变换之间的区别和联系:师生活动:师生共同总结

5、位似、平移、轴对称、旋转等图形变换的基本变换规律:位似的变换规律前面已给出;平移是横、纵坐标加上或减去平移的单位;轴对称若以x轴为对称轴则对应点的横坐标相等,纵坐标互为相反数,若以y轴为对称轴则反之;旋转是一个图形绕原点旋转180形成中心对称时,横纵坐标都互为相反数.2.联系新旧知识,进行归纳总结,形成知识体系.活动三:开放训练体现应用【应用举例】例1如图27358,ABO三个顶点的坐标分别为A(2,4),B(2,0),O(0,0),以原点O为位似中心,画出一个三角形,使它与ABO的相似比为32.图27358师生活动:学生独立思考,尝试用多种方法进行解答,教师注意对例题的讲解与点评.对例题的设

6、置使学生掌握在直角坐标系中作位似图形的方法,并能对作图方法进行归纳.【拓展提升】例2在平面直角坐标系xOy中,已知ABC和DEF的顶点坐标分别为A(1,0),B(3,0),C(2,1),D(4,3),E(6,5),F(4,7).图27359按下列要求画图:以点O为位似中心,将ABC向y轴左侧按比例尺21放大得ABC的位似图形A1B1C1,并解决下列问题:(1)点A1的坐标为_(2,0)_;点B1的坐标为_(6,0)_;点C1的坐标为_(4,2)_.(2)请你利用旋转、平移两种变换,使A1B1C1通过变换后得到A2B2C2,且A2B2C2恰与DEF拼接成一个平行四边形(非正方形),写出符合要求的

7、变换过程.进一步加深对位似变换坐标规律的理解和应用,培养学生的探究能力,并为此获得成功的体验. (续表)活动四:课堂总结反思【达标测评】1.已知线段AB两端点A(4,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,点A的对应点为点C,则端点C的坐标为(A)A.(2,3)B(2,1)C(4,3)D(4,1)2.如图27360,ABO缩小后变为ABO,其中点A,B的对应点分别为A,B,点A,B均在图中格点上,若线段AB上有一点P(m,n),则点P在AB上的对应点P的坐标为(D)图27360A.(,n) B(m,n) C. D.3.在平面直角坐标系中,已知点

8、A(4,2),B(2,2),以原点O为位似中心,把ABO放大为原来的2倍,则点A的对应点A的坐标是_(8,4)或(8,4)_.4.如图27361,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1,点A的坐标为(1,0),则点E的坐标为_(,)_图273615.已知ABC三顶点的坐标分别为A(0,2),B(3,3),C(2,1).(1)画出ABC;(2)以点B为位似中心,将ABC放大到原来的2倍,在网格图中画出放大后的图形A1BC1;(3)写出点A的对应点A1的坐标.通过设置达标测评,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”. (续表)活动四:课堂总结反思1.课堂总

9、结:请同学们回顾以下问题:(1)本课时学习的主要内容是什么?(2)四种图形变换中存在什么区别和联系?教师强调:利用坐标变化将一个图形放大或缩小时,注意位似图形对应点的坐标变化有两种情形.2.布置作业:教材第51页习题27.3第5,6题.通过问题的形式回顾所学基本知识,能够使学生获得整体认知.【知识网络】提纲挈领,重点突出.【教学反思】授课流程反思在教授本课时,以复习学过的图形和坐标变换为例,引出本节课的位似坐标变换,效果较好;在探究新知过程中,利用点的坐标变换规律的特征进行作图,培养学生的数形结合思想,学生能够更好地理解内容.讲授效果反思本节课中,让学生自己通过观察、动手操作画出变换后的图形,

10、向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想与方法,获得广泛的数学活动经验.师生互动反思从课堂交流和课堂检测来看,根据题意画位似图形,学生有时只画一种,作图能力有待提高和完善.习题反思好题题号 错题题号 反思教学过程和教师表现,进一步提升操作流程和自身素质.典案二导学设计【学习目标】1知识技能已知位似中心为坐标原点,相似比为k,探究对应点之间坐标关系;正确作出位似中心为坐标原点,相似比为的位似图形2解决问题作出位似中心为坐标原点,相似比k为的位似图形3.数学思考通过探究位似变换用坐标的变化来刻画,进一步体现数学的精确美;通过

11、作位似中心为坐标原点,相似比为k的位似图形,发展学生的数学应用意识4情感态度通过探究,体验成就感,从而激发兴趣通过应用,体验数学源于生活,高于生活【学习重难点】重点:用图形的坐标变化来表示图形的位似变换难点:把一个图形按一定比例放大或缩小后,点的坐标变化规律课前延伸【知识梳理】1. 如果两个多边形不仅相似,而且对应顶点的连线_相交于一点_,像这样的两个图形叫做_位似图形_,这点叫做_位似中心_图273622如图27362,在平面直角坐标系中,ABC的顶点坐标为A(2,3),B(3,2),C(1,1)(1)若将ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的A1B1C1;(2)

12、画出A1B1C1绕原点旋转后得到的A2B2C2;(3)ABC与ABC是中心对称图形,请写出对称中心的坐标:_;(4)顺次连接C,C1,C,C2,所得到的图形是轴对称图形吗? 课内探究1自主探究:如图27363,在平面直角坐标系中,有两点A(6,3),B(6,0),以原点为位似中心,相似比为,把线段AB缩小,观察对应点之间坐标的变化,你有什么发现?图273632如图27364, ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为21,将ABC放大,观察对应点之间坐标的变化,你有什么发现?图27364例:如图27365,四边形ABCD各点的坐标分别为A(6,6),B(8,2),C(4,0),D(2,4),以原点O为位似中心,将这个四边形缩小为原来的,画出缩小后的四边形图27365解:缩小后的四边表ABCD如图27365所示课后提升1如图27367表示AOB和将它缩小后得到的COD,求它们的相似比 图27367 图273682如图27368,ABC三个顶点的坐标分别为A(2,2),B(5,2),C(4,5),以原点O为位似中心,将这个三角形放大为原来的2倍3如图27369,请以坐标原点O为位似中心,作ABCD的位似图形,并把它的边长放大3倍,其中A(0,4),B(2,0),C(6,0),D(4,4)图27369

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
  • 教与学 新教案九年级数学下册 27.3 位似图形及作图(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc教与学 新教案九年级数学下册 27.3 位似图形及作图(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 春九年级数学下册 27.3 第1课时 位似图形的概念及画法教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc春九年级数学下册 27.3 第1课时 位似图形的概念及画法教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 教与学 新教案九年级数学下册 27.1 相似图形(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc教与学 新教案九年级数学下册 27.1 相似图形(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 教与学 新教案九年级数学下册 29.1 正投影(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc教与学 新教案九年级数学下册 29.1 正投影(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 教与学 新教案九年级数学下册 29.1 投影(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc教与学 新教案九年级数学下册 29.1 投影(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 春九年级数学下册 27.3 第2课时 平面直角坐标系中的位似教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc春九年级数学下册 27.3 第2课时 平面直角坐标系中的位似教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 教与学 新教案九年级数学下册 27.1 相似多边形(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc教与学 新教案九年级数学下册 27.1 相似多边形(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 教与学 新教案九年级数学下册 29.2 三视图(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc教与学 新教案九年级数学下册 29.2 三视图(第1课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 春九年级数学下册 第二十七章 相似 27.3 位似 第1课时 位似图形的概念及画法教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc春九年级数学下册 第二十七章 相似 27.3 位似 第1课时 位似图形的概念及画法教案 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 教与学 新教案九年级数学下册 26.1.2 反比例函数性质的应用(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc教与学 新教案九年级数学下册 26.1.2 反比例函数性质的应用(第2课时)教学设计 (新版)新人教版-(新版)新人教版初中九年级下册数学教案.doc
  • 搜索标签

    当前位置:首页 > 教育专区 > 初中数学

    移动网页_全站_页脚广告1

    关于我们      便捷服务       自信AI       AI导航        获赠5币

    ©2010-2025 宁波自信网络信息技术有限公司  版权所有

    客服电话:4008-655-100  投诉/维权电话:4009-655-100

    gongan.png浙公网安备33021202000488号   

    icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

    关注我们 :gzh.png    weibo.png    LOFTER.png 

    客服