1、三角形内角和定理教学目标: 1.掌握三角形内角和定理的证明及简单应用。 2.灵活运用三角形内角和定理解决相关问题。 3.用多种方法证明三角形定理,培养一题多解的能力。 4.对比过去撕纸等探索过程,体会思维实验和符号化的理性作用教学过程第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理 实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图638(1)然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3),最后得图(4)所示的结果(1) (2) (3) (4)试用自己的语言说明这一结论的证明思路。想一想,还有其它折法吗?(2)实验2:将纸片三角
2、形三顶角剪下,随意将它们拼凑在一起。 试用自己的语言说明这一结论的证明思路。想一想,如果只剪下一个角呢?第二环节:探索新知活动内容: 用严谨的证明来论证三角形内角和定理ABCED 看哪个同学想的方法最多?ABCDE方法一:过A点作DEBC DEBCDAB=B,EAC=C(两直线平行,内错角相等)DAB+BAC+EAC=180BAC+B+C=180(等量代换)方法二:作BC的延长线CD,过点C作射线CEBA CEBAB=ECD(两直线平行,同位角相等)A=ACE(两直线平行,内错角相等)BCA+ACE+ECD=180A+B+ACB=180(等量代换)第三环节:反馈练习活动内容: (1)ABC中可以有3个锐角吗? 3个直角呢? 2个直角呢?若有1个直角另外两角有什么特点?(2)ABC中,C=90,A=30,B=?(3)A=50,B=C,则ABC中B=?(4)三角形的三个内角中,只能有_个直角或_个钝角(5)任何一个三角形中,至少有_个锐角;至多有_个锐角(6)三角形中三角之比为123,则三个角各为多少度?(7)已知:ABC中,C=B=2A。(a)求B的度数;(b)若BD是AC边上的高,求DBC的度数?第四环节:课堂小结活动内容: 证明三角形内角和定理有哪几种方法? 辅助线的作法技巧. 三角形内角和定理的简单应用.课后作业:第239页随堂练习;第241页习题6.6第1,2,3题