收藏 分销(赏)

福建省泉州市泉港三川中学八年级数学上册《15.2 旋转》教案 华东师大版.doc

上传人:s4****5z 文档编号:7414006 上传时间:2025-01-03 格式:DOC 页数:9 大小:722KB
下载 相关 举报
福建省泉州市泉港三川中学八年级数学上册《15.2 旋转》教案 华东师大版.doc_第1页
第1页 / 共9页
福建省泉州市泉港三川中学八年级数学上册《15.2 旋转》教案 华东师大版.doc_第2页
第2页 / 共9页
点击查看更多>>
资源描述
福建省泉州市泉港三川中学八年级数学上册《15.2 旋转》教案 华东师大版 教学目标: 知识与技能目标:31.认识图形的旋转变换,掌握它的基本性质. 2.认识旋转对称图形,并能够按要求作出简单的平面图形旋转后的图形.3.培养学生创造图案的设计能力 过程与方法目标:1.、通过具体实例认识图形的旋转变换,探索它的基本性质. 引导学生,探索发现原图形经过旋转后的对应点、对应线段之间的位置关系与数量关系.体验感受图形旋转的主要因素是旋转中心和旋转的角度,从而体会到图形在旋转过程中,图形中的每一点都绕着旋转中转动了相同的角度2.认识旋转对称图形,理解旋转对称图形的概念,重视对学生自行设计旋转对称图形的能力的培养, 并能够按要求作出简单的平面图形旋转后的图形. 情感与态度目标:认识和欣赏这些图形的旋转变换在现实生活中的应用 ,体会到数学与实际生活的密切联系,经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、交流等活动,发展初步的审美能力,增强对图形欣赏的意识。 教学重、难点与关键: 重点:旋转变换的基本性质,并能根据性质作出简单的平面图形旋转后的图形。 难点:旋转变换的基本性质的探索,作出简单的平面图形旋转后的图形。 关键:认识理解旋转变换的基本性质,理解旋转对称图形,培养学生动手操作能力。 教辅工具: 教时安排:4教时(即第4—7教时) 第4教时 教学程序设计: 程序 教师活动 学生活动 备注 创设 问题 情景 课件演示,旋转而动产生的奇妙画面。 你能自己举出日常生活中的一些事例吗? 学生对每一种画面谈谈自己的看法。 让学生扩展思维,列举生活中还有哪些旋转图形。 探 究 新 知 1 1.观察图形找出这些图形的共同特征: 2.概念:旋转、旋转中心 观察、分析、讨论出共同特征。 它们绕上面的悬挂点转动 2.理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。 探 究 新 知 2 1.做一做 用一张半透明的薄纸,覆盖在画有任意△AOB的纸上,在薄纸上画出与△AOB重合的一个三角形。然后用一枚图钉在点O处固定,将薄纸绕着图钉(即点O)转动一个角度45,薄纸上的三角形就旋转到了新的位置,标上A′、O′、B′,我们可以认为△AOB旋转45后到了上△A′O′B′。 在这样的旋转过程中,你发现了什么? 做一做后,讨论回答: 图中,可以看到点A旋转到点A′,OA旋转到OA′, ∠AOB旋转到∠A′OB′,这些都是互相对应的点、线段与角。那么 点B的对应点是___________; 线段OB的对应线段是线段______; 线段AB的对应线段是线段______; ∠A的对应角是___________; ∠B的对应角是___________; 旋转中心是点____________; 旋转的角度是____________。 探 究 新 知 3 做一做 如图11.2.5,如果旋转中心在△ABC的外面点O处,转动60,将整个△ABC旋转到△A′B′C′的位置。那么这两个三角形的顶点、边与角是如何对应的呢? 1.学生尝试 2.交流 探 究 新 知 4 1、 如图11.2.6,△ABC是等边三角形,D是BC上一点, △ABD经过旋转后到达△ACE的位置。 旋转中心是哪一点? 旋转了多少度? 如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置? 2、如图11.2.7(1),点M是线段AB上一点,将线段AB绕着点M顺时针方向旋转90,旋转后的线段与原线段的位置有何关系?如果逆时针方向旋转90呢? 反馈训练 应用提高 空间想象力的训练 注意讲评 小结 提高 说说“旋转”的概念,旋转的等量关系。 说说描述“旋转”的过程要注意哪几方面? 讨论、体会。 布置 作业 课本P11页2、3 反 思 第5教时 教学程序设计: 程序 教师活动 学生活动 备注 创设 问题 情景 回顾旋转的概念 理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。 探 究 新 知 1 探索 观察上面两个图形,你能发现有哪些线段相等?有哪些角相等? 你认为图形旋转的特征是什么? 教师组织学生分组讨论。 分组讨论 交流。 完成下面填空: 图11.2.4中,线段OA、OB都是绕点O旋转45角到对应线段OA′与OB′,而且 OA=___,OB=___,AB=___;∠AOB=____,∠A=___,∠B=_____。 在图11.2.5中,旋转中心是点O,点A、B、C都是绕点O旋转60角到对应点A′、B′、C′,而且 OA=________,OB=________,OC=________; AB=________,BC=________,CA=________; ∠CAB=________,∠ABC=________,∠BCA=________。 讨论后统一意见: 图形中每一点都绕着旋转中心旋转了同样大小的角度,对应点到旋转中心的距离相等,对应线段相等,对应角相等, 图形的形状与大小都没有发生变化 反馈 训练 应用 提高 练习 1.确定图形中的旋转中心,指出这一图形是由哪个基本图形旋转多少度、旋转几次而生成的(不计颜色)。 2.画出△ABC绕点C逆时针旋转90后的图形。 反馈训练 应用提高 空间想象力的训练 注意讲评 小结 提高 说说“旋转”的概念,旋转的等量关系。 说说描述“旋转”的过程要注意哪几方面? 讨论、体会。 布置 作业 画出所给图形绕点O顺时针旋转90后的图形。旋转几次后可以与原图形重合? 反 思 第6教时 教学程序设计: 程序 教师活动 学生活动 备注 创设 问题 情景 1.回顾旋转的概念 2.如图,画出ΔABC绕O点顺时针旋转60°的图形ΔA’B’C’. 1.理解概念:旋转中心在旋转过程中保持不动,图形的旋转由旋转中心和旋转的角度所决定。 2.学生独立完成。 探 究 新 知 1 实验1、画出正方形绕对角线的交点顺时针旋转90°的图形. 观察旋转后的图形与原正方形有何关系? 实验2.如图11.2.8所示,电扇的叶片转动120、螺旋桨转动180后,都能与自身重合。 你能再举出一些这样的实例吗? 实验3、 用一张半透明的薄纸,覆盖在如11.2.9所示的图形上,在薄纸上画这个图形,使它与如图11.2.9所示的图形重合。然后用一枚图钉在圆心处穿过,将薄纸绕着图钉旋转,观察旋转多少度(小于周角)后,薄纸上的图形能与原图形再一次重合。 问题:前面3个实验有什么共同的特性? 概念: 旋转对称图形:绕着某一点旋转一定角度(小于周角)后能与自身重合的图形. 1.一个正方形,和大头针,进行实验,并回答问题。 作图后发现,正方形旋转90°后与原图形重合。 2、在日常生活中,我们经常可以看到,一些图形绕着某一定点转动一定的角度后能与自身重合。 3、小组讨论,全班交流。 4、独立操作完成,小组交流谈心得。 5、讨论得出:绕着某一点旋转一定角度后能与自身重合的图形. 操作 训练 操作1:用类似上述的操作方法对如图11.2.10所示的图形进行探索,看看它是不是旋转对称图形?想一想旋转中心在何处?该图形需要旋转多少度后,能与自身重合?该图形是轴对称图形吗? 操作2:图11.2.11所示的图形是轴对称图形,用类似上述的操作方法对图11.2.11所示的图形进行探索,它能通过旋转与自身重合吗? 用半透明的薄纸覆盖在如11.2.10所示的图形上,在薄纸上画这个图形,使它与如图11.2.10所示的图形重合。独立操作完成。 用半透明的薄纸覆盖在如11.2.10所示的图形上,在薄纸上画这个图形,使它与如图11.2.10所示的图形重合。独立操作完成。 反馈 训练 应用 提高 找找看,下面图形中有几匹马?它们的位置关系如何? 如图所示的图形绕哪一点旋转多少度后能与自身重合? 3.如图,画出ΔABC绕O点逆时针旋转60°的图形ΔA’B’C’. 反馈训练 应用提高 空间想象力的训练 注意讲评 小结 提高 说说“旋转对称”的概念。 说说描述“旋转对称”的过程要注意哪几方面? 讨论、体会。 布置 作业 P15页1、2、3、4 想一想: 正方形旋转180°后能与自身重合吗?还能旋转几度与自身重合? 正五边形、正六边形、正七边形……最小旋转多少度能与自身重合? 反 思
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服