1、3.2证明的必要性教学目标(一)教学知识点1通过观察、猜测得到的结论不一定正确2让学生初步了解,要判定一个数学结论正确与否,需要进行有根有据的推理(二)能力训练要求1通过探索,让学生初步了解数学中推理的重要性2初步了解要判定一个数学结论正确与否,需要进行有根有据的推理教学重点判定一个结论正确与否需进行推理教学难点理解数学推理的重要性教学方法自学、讨论、引导法教学过程巧设现实情境,引入新课师在现实生活中,我们常采用观察的方法来了解世界在数学学习中,我们通过观察、度量、猜测来得到一些结论那这样得到的结论都是正确的吗?如果不是,那么用什么方法才能说明它的正确性呢?生需要推理证明讲授新课通过观察、猜测
2、、度量得到的结论是否正确,需要用推理过程得证下面我们来做一做(出示投影片)当n=0、1、2、3、4、5时,代数式n2n+11的值是质数吗?你能否得到结论:对于所有自然数n,n2n+11的值都是质数?与同伴交流生甲当n=0时,n2n+11=11当n=1时,n2n+11=11当n=2时,n2n+11=13当n=3时,n2n+11=17当n=4时,n2n+11=23当n=5时,n2n+11=31由此可知:当n=0、1、2、3、4、5时,代数式n2n+11的值都是质数生乙这样我们就可以得到结论:对于所有自然数n,n2n+11的值都是质数师你一定能肯定吗?师好,下面我们再来做一做(出示投影片)如图,假如
3、用一根比地球赤道长1 m的铁丝将地球赤道围起来,那么铁丝与地球赤道之间的间隙能有多大(把地球看成球形)?能放进一颗红枣吗?能放进一个拳头吗?与同伴进行交流生甲能放进一颗红枣,也能放进一个拳头生乙不行师同学们讨论得很精彩,但都不能肯定,那么怎样才能肯定呢?要判断一个数学结论是否正确,仅仅依靠经验、观察或实验是不够的,必须一步一步、有根有据地进行推理那大家来想一想、议一议(出示投影片)(1)在数学学习中,你用到过推理吗?举例说明(2)在日常生活中,你用到过推理吗?举例说明生甲在数学学习中,我们曾用到过推理如:判定一个四边形是不是平行四边形;生乙还有判定一个四边形是否是梯形生丙在日常生活中,我们也常
4、用到推理如:某同学的笔丢了然后通过推理,说明另一同学拿了师同学们举出了许多的例子,说明不论在日常生活中,还是在数学学习中,要判断一件事情或一个结论正确与否,必须进行一步一步有根有据地推论下面我们来通过练习熟悉本节课的内容课堂练习(一)1图中两条线段a与b的长度相等吗?请你先观察,再度量一下答案:a与b的长度相等2图中三条线段a、b、c,哪一条线段与线段d在同一直线上?请你先观察,再用三角尺验证一下答案:线段b与线段d在同一直线上3当n为正整数时,n2+3n+1的值一定是质数吗?答案:经验证:当n为正整数时,n2+3n+1的值一定是质数(二)课本P80 读一读:“费马的失误”(三)看课本P798
5、0,然后小结课时小结本节课主要研究了:要判断一个数学结论是否正确,需要有根有据地进行推理课后作业(一)课本P81习题3.2 1、2、3活动与探究1有没有这样的质数,当它加上10和14时仍为质数若有,求出来;若没有,请证明过程这是一个找符合条件的质数问题由于质数分布无一定规律,因此从最小的质数试验起希望能找到所求的质数,然后再加以逻辑的证明结果因为2+10=12,2+14=16,所以质数2不适合因为3+10=13,3+14=17,所以质数3符合要求因为5+10=15,5+14=19,所以质数5不合要求因为7+10=17,7+14=21,所以质数7不适合因为11+10=21,11+14=25,所以
6、质数11不适合从上面的观察,3合乎要求,但符合条件的质数是否只有3呢?这必须加以证明证明除了3以外的所有正整数加上10和14均不能是质数为此把正整数按模3同余分类即:3k1,3k+1(k为正整数)因为(3k1)+10=3k+9=3(k+3)是合数,(3k+1)+14=3k+15=3(k+5)是合数,所以3k1和3k+1这两类整数中的质数加上10和14后不能都是质数因此,在3k1和3k+1两类整数中的质数加上10和14后当然不能都是质数对于3k这类整数,只有在k=1时,3k才是质数,其余均为整数所以所求的质数只有3板书设计32 证明的必要性一、画三角形二、做一做n2n+11的值是质数要判断一个数学结论是否正确,必须有根有据地推理三、议一议四、课堂练习读一读五、课后作业