1、花边有多宽一、内容与分析内容:本节课主要学习一元二次方程的概念,学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。二、目标与分析教学目标:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。2、会识别一元二次方程及各部分名称。从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。三、问题诊断分析 学生在本节课遇到的主要困难可能是不会根据题意列方程,教师
2、应该引导学生多发现题目中的等量关系。四、教学过程分析第一环节:自主探究问题一出示问题一:一块四周镶有宽度相等的花边的地毯如下图,它的长为m,宽为m地毯中央长方形图案的面积为m2。让学生根据这一问题情境提出问题:根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?活动目的:提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。教学要求与效果:教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的地毯、花边和中央长
3、方形吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,自己画出所抽象出的几何图形,然后教师呈现第二幅图。教学中教师可以一次完成下列任务:(1)罗列学生提的问题;(2)引导学生分析所提问题满足的条件,提出解答的方式;(3)引导学生列出相应的方程并整理。从实际效果来看,学生提出的问题多样有:(1)花边的宽,(2)中央长方形的长、宽等;学生列方程问题不大,所列方程也多样,依据的等量关系不同,得到的方程也不同;但是,整理方程时显得困难,这与课前没有复习整式的运算有直接的关系。第二环节:自主探究问题二在学生的疑问处提出问题:你能找到关于102、112、122、132、142这五个数
4、之间的等式吗?得到等式102+112+122=132+142之后你的猜想是什么?根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。在难以找到的情况下,归结为方程去解决。活动目的:上述问题直接给出方程没有说服力,所以先让学生猜想。学生得到的猜想是:是否还存在五个连续整数,使前三个数的平方和等于后两个数的平方和。然后让学生根据猜想继续找这样的五个连续整数,在难以找到的情况下,促使学生想办法归结为方程去解决。教学要求与效果:找到等式102+112+122=132+142之后的猜想不同。再找五个连续整数,使前三个数的平方和等于后两个数的平方和,部分学生有困难,寻找的方式也有不同。有的
5、同学采取代入特殊值一个一个去试一试,有的同学直接归结为方程去解决。第四环节:总结归纳归纳一元二次方程的概念:结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。活动目的:关注学生对概念的理解,通过具体的例子来归纳一元二次方程的概念,加深对概念的理解。第五环节:目标检测1、把方程(3x2)24(x3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项2从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽尺,竖着比门框高尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了你知道竹竿有多长吗?请根据这一问题
6、列出方程第六环节:布置作业A组:1、课本48面随堂练习1、2题2、一元二次方程的一般形式是_.B组:1.将方程5x2+1=6x化为一般形式为_.2.将方程(x+1)2=2x化成一般形式为_.3.方程2x2=8化成一般形式后,一次项系数为_,常数项为_.4.若x=1是方程ax2+bx+c=0的解,则( )A.a+b+c=1B.ab+c=0 C.a+b+c=0D.abc=05.一元二次方程7x22x=0的二次项、一次项、常数项依次是( )A.7x2,2x,0B.7x2,2x,无常数项 C.7x2,0,2xD.7x2,2x,06.如果方程ax2+5=(x+2)(x1)是关于x的一元二次方程,则a_.7.关于x的方程(m4)x2+(m+4)x+2m+3=0,当m_时,是一元二次方程,当m_时,是一元一次方程.C组:现有长40米,宽30米场地,欲在中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为32,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来。