资源描述
第18课平面图形的认识
【回顾与思考】
〖知识点〗
两点确定一条直线、相交线、线段、射线、线段的大小比较、线段的和与差、线段的中点、角、角的度量、角的平分线、锐角、直角、钝角、平角、周角、对顶角、邻角、余角、补角、点到直线的距离、同位角、内错角、同旁内角、平行线、平行线的性质及判定、命题、定义、公理、定理
〖考查重点与常见题型〗
1、求线段的长、角的度数等,多以选择题、填空题出现
2、利用平行线的判定与性质证明或计算,常作为主要定理或公理使用
【例题经典】
角的计算
例1.如图所示,∠1+∠2+∠3+∠4+∠5=_________.
解析:这类题是近几年中考的常见题型,主要考查学生对问题的转化思想及分析、解决问题的能力.通过观察图形,可作出一条辅助线,从而把问题化难为易.
点评:适当添加辅助线是解决几何问题的重要手段,有时方法不唯一,可引导学生多方面、多角度去思考.
例2、如图,已知方格纸中的每个小方格都是相同的正方形,∠AOB画在方格纸上,请在小方格的顶点上标出一个点P,使点P落在∠AOB的平分线上。
考查内容:多角度、深层次理解角平分线概念,以及与角平分线概念相联系的其它概念和原理。
【平行线的应用】
例2、如图所示,直线a∥b,则∠A= 度.
例3.如图所示,下列条件中,不能判断L1∥L2的是( )
A.∠1=∠2 B.∠2=∠3
C.∠4=∠5 D.∠2+∠4=180°
分析:根据平行线的判定或性质,不难得到:∠2=∠3不能判断L1∥L2.
点评:这类问题可由选项出发找结论,也可由结论出发找选项.
例4.如图,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=5O°,则∠2的度数为( ).
(A)50° (B)6 O° (C)6 5° (D)7 O°
答案:C
例5.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第…次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是( ).
(A)120° (B)130° (C)140° (D)150°
答案:D
根据条件求线段长度或长度比
例6.(1)数轴上有两点A、B分别表示实数a、b,则线段AB的长度是( )
A.a-b B.a+b C.│a-b│ D.│a+b│
(2)已知线段AB,在BA的延长线上取一点C,使CA=3AB,则线段CA与线段CB之比为( )
A.3:4 B.2:3 C.3:5 D.1:2
分析:本类题目做时注意线段长度是非负数,若有字母注意使用绝对值.
点评:解决本例类型的题目应结合图形,即数形结合,这样做起来简捷.根据条件求线段长度或长度比可引导学生从不同的途径分析解答.
展开阅读全文