1、实数2教学目标知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应.能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程.通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力.情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系.教学重点、难点重点:了解无理数、实数的概念和实数的分类.难点:正确理解无理数的意义.教学程序一、【情境导入 营造氛围】在小学的时候,我们就认识一个非常特殊的数:圆周率.它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住的最多.教师简介目前值已准确算到上千亿位.二、【检索旧知 揭示矛盾】
2、是一个怎样的数呢?引导学生回忆有理数的分类:整数 如:-3,0,5分数 如:有理数肯定不是整数,那么它是一个分数吗?让学生用计算器将下列有理数化成小数形式:= , -= , =引导学生发现:任何一个有理数写成小数的形式,必定是有限小数或者无限循环小数.形成共识:不是一个有理数.三、【实践体验 感受新知】还有哪些数和一样是无限不循环小数呢?动手操作:让学生用课前准备的计算器动手求的值,再利用平方关系验算所得的结果.关注:“你发现了什么?”学生分析议论并发表个人见解,教师给出评议后再用计算机演示计算的情形,以增强学生对“是一个无限不循环小数”的信服度.学生认识了个别无理数之后建立一般概念:无限不循
3、环小数叫做无理数.引入无理数的概念后再回到具体的个别情形去,让学生再举例一些无理数.无理数的出现,使数系在有理数的基础上进一步扩展到实数:有理数与无理数统称为实数.问:你能说出实数的分类吗?四、【练习反馈 调整巩固】1、把下列各数分别填入相应的数集里.-,-,0.324371, 0.5, -, , 4, -,0.8080080008实数集 无理数集 有理数集 分数集 负无理数集 2、下列各说法正确吗?请说明理由.3.14是无理数; 无限小数都是无理数;无理数都是无限小数; 带根号的数都是无理数;无理数都是开方开不尽的数; 不循环小数都是无理数.五、【质疑讨论 数形结合】质疑:你能在数轴上找到表
4、示的点吗?让学生先按照计算器显示的结果来想象出表示的点在数轴上的位置.小组讨论:1、如图(教材P9图11.2.1),你能将两个边长为1的小正方形拼割成一个大的正方形吗?它的面积是多少?2、你能由面积求出大正方形的边长吗?3、大正方形的边长正好是小正方形的 .教师听取学生的讨论结果,并对学生的结论给出评价.教师运用课件动态展示在数轴上确定表示的点的过程.以为突破口,让学生了解数轴上的任一点必定表示一个实数;反过来,每一个实数也都可以用数轴上的点来表示.换句话说:实数与数轴上的点一一对应.六、【归纳小结 】以由学生回答,教师适时补充的方式,引导学生从以下方面进行小结:1、无理数、实数的意义;2、有理数与无理数的区别;3、实数与数轴上的点一一对应.