ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:37KB ,
资源ID:7409224      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7409224.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【s4****5z】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【s4****5z】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(八年级数学上册 第十一章 数的开方 11.2 实数2 第1课时教案 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc)为本站上传会员【s4****5z】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

八年级数学上册 第十一章 数的开方 11.2 实数2 第1课时教案 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc

1、实数2教学目标知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应.能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程.通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力.情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系.教学重点、难点重点:了解无理数、实数的概念和实数的分类.难点:正确理解无理数的意义.教学程序一、【情境导入 营造氛围】在小学的时候,我们就认识一个非常特殊的数:圆周率.它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住的最多.教师简介目前值已准确算到上千亿位.二、【检索旧知 揭示矛盾】

2、是一个怎样的数呢?引导学生回忆有理数的分类:整数 如:-3,0,5分数 如:有理数肯定不是整数,那么它是一个分数吗?让学生用计算器将下列有理数化成小数形式:= , -= , =引导学生发现:任何一个有理数写成小数的形式,必定是有限小数或者无限循环小数.形成共识:不是一个有理数.三、【实践体验 感受新知】还有哪些数和一样是无限不循环小数呢?动手操作:让学生用课前准备的计算器动手求的值,再利用平方关系验算所得的结果.关注:“你发现了什么?”学生分析议论并发表个人见解,教师给出评议后再用计算机演示计算的情形,以增强学生对“是一个无限不循环小数”的信服度.学生认识了个别无理数之后建立一般概念:无限不循

3、环小数叫做无理数.引入无理数的概念后再回到具体的个别情形去,让学生再举例一些无理数.无理数的出现,使数系在有理数的基础上进一步扩展到实数:有理数与无理数统称为实数.问:你能说出实数的分类吗?四、【练习反馈 调整巩固】1、把下列各数分别填入相应的数集里.-,-,0.324371, 0.5, -, , 4, -,0.8080080008实数集 无理数集 有理数集 分数集 负无理数集 2、下列各说法正确吗?请说明理由.3.14是无理数; 无限小数都是无理数;无理数都是无限小数; 带根号的数都是无理数;无理数都是开方开不尽的数; 不循环小数都是无理数.五、【质疑讨论 数形结合】质疑:你能在数轴上找到表

4、示的点吗?让学生先按照计算器显示的结果来想象出表示的点在数轴上的位置.小组讨论:1、如图(教材P9图11.2.1),你能将两个边长为1的小正方形拼割成一个大的正方形吗?它的面积是多少?2、你能由面积求出大正方形的边长吗?3、大正方形的边长正好是小正方形的 .教师听取学生的讨论结果,并对学生的结论给出评价.教师运用课件动态展示在数轴上确定表示的点的过程.以为突破口,让学生了解数轴上的任一点必定表示一个实数;反过来,每一个实数也都可以用数轴上的点来表示.换句话说:实数与数轴上的点一一对应.六、【归纳小结 】以由学生回答,教师适时补充的方式,引导学生从以下方面进行小结:1、无理数、实数的意义;2、有理数与无理数的区别;3、实数与数轴上的点一一对应.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服