1、272 二次函数的图象与性质(3)教学目标:1、会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质2、会运用配方法确定二次函数图象的顶点、开口方向和对称轴重点:二次函数的图象与性质难点:二次函数的图象与性质本节知识点会画出这类函数的图象,通过比较,了解这类函数的性质教学过程我们已经了解到,函数的图象,可以由函数的图象上下平移所得,那么函数的图象,是否也可以由函数平移而得呢?画图试一试,你能从中发现什么规律吗?实践与探索例1在同一直角坐标系中,画出下列函数的图象, ,并指出它们的开口方向、对称轴和顶点坐标解 列表x-3-2-10123202028820描点、连线,画出这三个函数的
2、图象,如图2625所示它们的开口方向都向上;对称轴分别是y轴、直线x= -2和直线x=2;顶点坐标分别是(0,0),(-2,0),(2,0)回顾与反思 对于抛物线,当x 时,函数值y随x的增大而减小;当x 时,函数值y随x的增大而增大;当x 时,函数取得最 值,最 值y= 探索 抛物线和抛物线分别是由抛物线向左、向右平移两个单位得到的如果要得到抛物线,应将抛物线作怎样的平移?例2不画出图象,你能说明抛物线与之间的关系吗?解 抛物线的顶点坐标为(0,0);抛物线的顶点坐标为(-2,0)因此,抛物线与形状相同,开口方向都向下,对称轴分别是y轴和直线抛物线是由向左平移2个单位而得的回顾与反思 (a、
3、h是常数,a0)的图象的开口方向、对称轴、顶点坐标归纳如下:开口方向对称轴顶点坐标当堂课内练习1画图填空:抛物线的开口 ,对称轴是 ,顶点坐标是 ,它可以看作是由抛物线向 平移 个单位得到的2在同一直角坐标系中,画出下列函数的图象, ,并指出它们的开口方向、对称轴和顶点坐标本课课外作业A组1已知函数, (1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;(3)分别讨论各个函数的性质2根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线得到抛物线和?3函数,当x 时,函数值y随x的增大而减小当x 时,函数取得最 值,最 值y= 4不画出图象,请你说明抛物线与之间的关系B组5将抛物线向左平移后所得新抛物线的顶点横坐标为 -2,且新抛物线经过点(1,3),求的值课堂小结:教学反思: