1、相反数 三维目标 一知识与技能 (1)借助数轴了解相反数的概念,知道两个互为相反数的位置关系 (2)给出一个数,能求出它的相反数 二、过程与方法 借助数轴,通过观察特例,总结出相反数的概念从数和形两个侧面理解相反数 三、情感态度与价值观 鼓励学生积极进行归纳、比较交流等活动 教学 重、难点与关键 1重点:理解相反数的意义,会求一个数的相反数 2难点:理解和掌握双重符合的简化 3关键:通过观察特例,以及互为相反数的两个数在数轴上的位置,理解相反数 教学过程 四、复习提问课堂引入 在数轴上,画出表示6,-6,2,-2,4,-4各数的点五、新授 请同学们观察后回答: 1上述中6和-6;2和-2,4和
2、-4每对数有什么特点? 2每对数在数轴上所表示的点有什么特点? 3再观察课本第8页的图12-1中点D和点B,它们的位置关系如何?它们各表示的数有什么特点? 概括: (1)每一对数,只有符号不同 (2)在数轴上表示每一对数的两个点分别在原点的两边,并且离开原点的距离相等 (3)点D和点B分别位于原点的两边,且与原点的距离相等,它们分别表示-3和3 思考:数轴上与原点的距离是2的点有几个?这些点表示的数是什么?与原点的距离是5的点呢? 归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称,如下图: 像这样只有符号不同的两个数叫
3、做互为相反数,例如6和-6,2和-2,都是互为相反数,也就是说6的相反数是-6,-2的相反数是2 一般地,a和-a互为相反数,特别地,0的相反数仍是0 问:数轴上表示相反数的两个点和原点有什么关系? 答:数轴上表示相反数的两个点是关于原点对称,是在原点的两旁(除0外),并且与原点的距离相等 注意相反数与倒数的区别,若两个数只有符号不同,那么这两个数叫做互为相反数;若两个数的乘积等于1,则这两个数叫互为倒数任何有理数都有相反数,零的相反数是零,而零没有倒数 例1:分别写出下列各数的相反数 5,-7,-3,+11.2,0 解:5的相反数是-5;-7的相反数是7;-3的相反数是3;+11.2的相反数
4、是-11.2;0的相反数是0 强调书写格式,防止出现如“5=-5”的错误 容易看出,在正数前面添上“”号,就得到这个正数的相反数在任意一个数的前面添上“”号,新的数就表示原数的相反数 例如:-(+5)=-5,-(-7)=7,-(-3)=3,-(+11.2)=-11.2,-0=0 我们知道一个正数,前面的“”号可以写也可以不写,所以在一个数的前面添上“”号,表示这个数没有变化,还是它本身 例如:+(-4)=-4,+(+12)=12,+0=0 六、课堂练习 1写出下列各数的相反数 +2,-2.5,0, 2化简下列各数 -(-30),-(+3),-(-38.2),+(-5),+(+) 3指出下列各对
5、数,哪些是相等的数?哪些是互为相反数? +(-3)与-3,-(+3)与3,-(-7)与-7 4如果a=-a,那么表示a的点在数轴上的什么位置? 5你会化简下列各数吗?试试看(本题可根据学生实际情况选用) -+(-2),-(-6) 提示: 因为任意数a是-a的相反数,所以表示a的点在数轴上与表示-a的点关系原点对称,这两个点分别在原点左、右两边且与原点距离相等 七、课堂小结 本节课我们学习了相反数的概念、相反数的求法和双重符号的简化理解相反数的意义,相反数总是一正一反成对出现(零除外),从数轴上看,表示互为相反数的两个点,分别在原点的两边,且到原点距离相等要表示一个数的相反数,只要在这个数前面添“”号,-a表示a的相反数,当a是正数时,-a表示一个负数;当a是负数时,则-a表示正数此外我们还应该注意相反数和倒数的区别 八、作业布置 1课本第11页练习1、2、3题,第15页习题12第3题九、板书设计:1.2.3 相反数 第三课时1、一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,那么称这两个点关于原点对称,如下图: 像这样只有符号不同的两个数叫做互为相反数,例如6和-6,2和-2,都是互为相反数,也就是说6的相反数是-6,-2的相反数是22、随堂练习。3、小结。十、课后反思