1、4.3 解直角三角形教学目标1、能够根据直角三角形的边角关系进行计算;2、能用三角函数的知识根据三角形中已知的边和角求出未知的边和角。教学重点与难点 用函数的观点理解正切,正弦、余弦教学过程一、知识回顾1、在RtABC中,C90,分别写出A的三角函数关系式:sinA_,cosA=_,tanA_。B的三角函数关系式_。2、比较上述中,sinA与cosB,cosA与sinB,tanA与tanB的表达式,你有什么发现?_如图,在RtABC中,C=90,BC=6,AC=8,则sinA=_,cosA=_,tanA=_。如图,在RtABC中,C=90,BC=2,AC=4,则sinB=_,cosB=_,ta
2、nB=_。在RtABC中,B=90,AC=2BC,则sinC=_。如图,在RtABC中,C=90,AB=10,sinA=,则BC=_。在RtABC中,C=90,AB=10,sinB=,则AC=_。如图,在RtABC中,B=90,AC=15,sinC=,则AB=_。在RtABC中,C=90,cosA=,AC=12,则AB=_,BC=_。二、例题例1、小明正在放风筝,风筝线与水平线成35角时,小明的手离地面1m,若把放出的风筝线看成一条线段,长95m,求风筝此时的高度。(精确到1m)(参考数据:sin350.5736,cos350.8192,tan350.7002)例2、工人师傅沿着一块斜靠在车厢
3、后部的木板往汽车上推一个油桶(如图),已知木板长为4m,车厢到地面的距离为1.4m。(1)你能求出木板与地面的夹角吗?(2)请你求出油桶从地面到刚刚到达车厢时的移动的水平距离。(精确到0.1m)(参考数据:sin20.50.3500,cos20.50.9397,tan20.50.3739)三、随堂练习1、小明从8m长的笔直滑梯自上而下滑至地面,已知滑梯的倾斜角为40,求滑梯的高度。(精确到0.1m)(参考数据:sin400.6428,cos400.7660,tan400.8391)2、一把梯子靠在一堵墙上,若梯子与地面的夹角是68,而梯子底部离墙脚1.5m,求梯子的长度(精确到0.1m) (参考数据:sin680.9272,cos680.3746,tan682.475)四、本课小结谈谈本课的收获和体会五、课外练习1、已知:如图,在RtABC中,ACB90,CDAB,垂足为D,CD8cm,AC10cm,求AB,BD的长。2、等腰三角形周长为16,一边长为6,求底角的余弦值。3、在ABC中,C90,cosB=,AC10,求ABC的周长和斜边AB边上的高。4、在RtABC中,C90,已知cosA,请你求出sinA、cosB、tanA、tanB的值。