1、第2课时用多种正多边形拼地板 教学目的 通过两种以上的正多边形拼地板活动,使学生进一步体会某些平面图形的性质及其位置关系,促使学生在学习中培养良好的情感、态度、以及主动参与、合作、交流的意识,进一步提高观察、分析、概括、抽象等能力,同时使学习进一步认识图形在日常生活中的应用,能欣赏现实世界中的美丽图案。 重点、难点 1重点:通过用两种以上正多边形拼地板,提高学生观察、分析、概括、抽象等能力。 2难点:寻找用哪几种正多边形能铺满地板。 教学过程 一、复习提问 1在正三角形、正方形、正五边形、正六边形、正八边形中,有哪几种可以用它们铺满地板? 2用正多边形瓷砖能不留空隙,不重叠地铺满地板的关键是什
2、么? 二、新授 昨天我们已经学习了用一种正多边形拼地板,关键是看哪种正多边形的内角的度数是360的约数。今天我们要探讨用两种拟上的正多边形拼地板。昨天已尝试了用正三角形和正六边形两种瓷砖拼地板,见教科书图9.3.3为什么能用正三角形,正六边形两种合在一起拼地板呢? 因为正六边形的内角为120,正三角形的内角为60,这样用2块正六边形和2块正三角形,它们内角之和为一个周角360,所以能铺满地板。 能不能用其他两种或两种以上的正多边形铺地板呢? 大家看教科书图9.3.4,它是用哪几种正多边形铺成的呢?为什么能拼成既没有空隙也没有重叠的平面图形? (用正十二边形和正三角形拼成的,因为正十二边形的内角
3、为 150,正三角形的内角为60,那么2个正十二边形和一个正三角形各一个内角的和恰好等于一周角360,所以可以铺满地板) 图9.3.5是由哪几种正多边形拼成的呢?为什么能拼成? (用正十二边形、正六边形、正方形拼成的。因为正十二边形的内角为150,正六边形的内角为120,正方形的内角为90,三者之和正好等于360,所以可以铺满地板) 观察图9.3.6是由哪几种正多边形拼成的呢?是否也满足这几个正多边形的一个内角之和为360这个条件呢? (由正八边形和正方形拼成的,正八边形的内角为135,正方形的内角为90,那么2个正八边和一个正方形各一个内角之和正好等于 360) 观察图9.3.7,又是由哪些正多边形拼成的?是否满足几个正多边形的一个内角和等于 360。是由正六边形、正方形、正三角形拼成的,如图所示: 120+90+90+60=360满足这几个正多边形的一个内角的和等于360 三、巩固练习 1你能用正三角形、正方形、正十二边形拼成不留空隙,不重叠的平面图形吗? 2教科书第73页练习1、2。 四、作业 教科书P74习题9.3第 1、2、3题。