收藏 分销(赏)

七年级数学上册 第一章 有理数 有理数的乘方教案 人教新课标版.doc

上传人:s4****5z 文档编号:7401972 上传时间:2025-01-02 格式:DOC 页数:5 大小:20.50KB 下载积分:10 金币
下载 相关 举报
七年级数学上册 第一章 有理数 有理数的乘方教案 人教新课标版.doc_第1页
第1页 / 共5页
七年级数学上册 第一章 有理数 有理数的乘方教案 人教新课标版.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
有理数的乘方(二)   教学目标:   1、知识目标:利用10的乘方,进行科学记数,会用科学记数法表示大于10的数.   2、能力目标:会解决与科学记数法有关的实际问题.   3、情感态度和价值观:正确使用科学记数法表示数,表现出一丝不苟的精神.   教学重点与难点:   教学重点:会用科学记数法表示大于10的数.   教学难点:正确使用科学记数法表示数.   教学过程:   一、科学记数法   用乘方的形式,有时可方便地来表示日常生活中遇到的一些较大的数,如:   太阳的半径约696000千米   富士山可能爆发,这将造成至少25000亿日元的损失   光的速度大约是300000000米/秒;   全世界人口数大约是6100000000.   这样的大数,读、写都不方便,考虑到10的乘方有如下特点:   102 = 100,103 = 1000,104 = 10000,…   一般地,10的n次幂,在1的后面有n个0,这样就可用10的幂表示一些大数,如,   6100000000=6.1×1000000000=6.1×109.[读作6.1乘10的9次方(幂)]   象上面这样把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫做科学记数法.   科学记数法也就是把一个数表示成a×10n的形式,其中1≤a的绝对值<10的数,n的值等于整数部分的位数减1.   二、例题   例1、用科学记数法记出下列各数:   (1)1000000; (2)57000000; (3)123000000000   解:(1)1000000 = 1×106   (2)57000000 = 5.7×107   (3)123000000000 = 1.23×1011.   用科学记数法表示一个数时,首先要确定这个数的整数部分的位数.   注意:一个数的科学记数法中,10的指数比原数的整数位数少1,如原数有6位整数,指数就是5.   说明:在实际生活中有非常大的数,同样也有非常小的数.本节课强调的是大数可以用科学记数法来表示,实际上非常小的数也同样可以用科学记数法表示,如本章引言中有1纳米=10-9米1,意思是1米是1纳米的10亿倍,也就是说1纳米是1米的十亿分一.用表达式表示为 1米=10-9纳米,或者1纳米=米=米.   三、课堂练习   1.用科学记数法记出下列各数.   (1)30060;(2)15400000;(3)123000.   2.下列用科学记数法记出的数,原来各是什么数?   (1)2×105;(2)7.12×103;(3)8.5×106.   3.已知长方形的长为7×105mm,宽为5×104mm,求长方形的面积.   4.把199 000 000用科学记数法写成1.99×10n-3的形式,求n的值.   课堂练习答案   1.(1)3.006×104;(2)1.54×107;(3)1.23×105.   2.(1)100000;(2)7120;(3)8500000.   3.3.5×1010mm.   4.n的值为11.   四、小结 有理数的乘方(三)   教学目标:   1、理解精确度和有效数字的意义;   2、要准确地说出精确度及按要求进行四舍五入取近似数.   教学重点、难点:   重点:近似数、精确度和有效数字的意义;   难点:由给出的近似数求其精确度及有效数字,按给定的精确度或有效数字求一个数的近似数.   教学过程:   一、近似数的定义   我们常会遇到这样的问题:   (1)初一(4)班有42名同学;   (2)每个三角形都有3个内角;   这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:   (3)我国的领土面积约为960万平方千米;   (4)王强的体重是约49千克.   960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.   我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.   王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5千克.   我们把象960万、49这些与实际数很接近的数称为近似数(approximate number).   在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题.   二、精确度   我们都知道,π = 3.14159···   我们对这个数取近似数:   如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;   如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);   如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);   一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.   这时,从左边第一个不是0的数起,到精确到的数位止,所有的数字都叫做这个数的有效数字(significant digits).   像上面我们取3.142为的近似数,它精确到千分位(即精确到0.001),共有4个有效数字3、1、4、2.   三、例题   例1、按括号内的要求,用四舍五入法对下列各数取近似数:   ①0.0158(精确到0.001)   ②30435(保留3个有效数字)   ③1.804(保留2个有效数字)   ④1.804(保留3个有效数字)   解:①0.0158≈0.016;   ②30435≈3.04×104;   ③1.804≈1.8;   ④1.804≈1.80   注意:②不能写成30400,这样是有5个有效数字,像这样的数保留几位有效数字一般要用科学计数法,或3.04万.   例2、下列由四舍五入法得到的近似数,各精确到哪一位?各有哪几个有效数字?   ①132.4;②0.0572;③2.40万   解:①132.4精确到十分位(精确到0.1),共有4个有效数字1、3、2、4;   ②0.0572精确到万分位(精确到0.0001),共有3个有效数字5、7、2;   ③2.40万精确到百位,共有3个有效数字2、4、0.   注意:   1、由于2.40万的单位是万,所以不能说它精确到百分位;   2、例1的④中,由四舍五入得来的1.80与1.8的精确度不同,不能随便把后面的0去掉.   四、小结:   1、近似数、精确度和有效数字的意义;   2、求一个近似数的精确度及有效数字;   3、按给定的精确度或有效数字求一个数的近似数.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服