1、四年级数学下册数学广角-鸡兔同笼教学设计教师:吴玲【教材分析】 “鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。解决这类问题时,教材展示了学生逐步解决问题的过程。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。 【学情分析】 (1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。 (2)列方程解答此类问题数量关系直观易懂,要加以提倡。 (3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据
2、具体问题引导学生分析理解,拓宽学生思维。 【教学目标】: 1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。 2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。 3、在解决问题的过程中培养学生的逻辑推理能力。 【教学重点】:理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。 【教学难点】:理解用假设法的算理并能运用不同的方法解决实际问题。 【教学建议】: 1、采取直观形象的方式,让学生探讨不同的方法。 2、适当把握教学要求。 一、历史激趣,导入新课 今天老师想给同学们介绍一部1500年前的数学名著孙子算经,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:
3、(课件出示以下情境图) 师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)结合课件谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情。二、探究交流,尝试解决问题。 1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示) 2.我们一起来看看被关在同一个笼
4、子里的鸡和兔给我们带来了哪些数学信息? 让学生理解:鸡和兔共8只。鸡和兔共有26条腿。 鸡有2条腿。 兔有4条腿。(课件出示) 3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢? 学生猜测,老师板书 4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)(一)列表法。(二)、假设法 1、假设全是鸡 82=16(条)(如果把兔全当成鸡一共就有8*2=16条腿) 26-16=10(条)(把兔看成鸡来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿) 4-2
5、=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。) 102=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以102=5就是兔的只数。) 8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡) 算出来后,我们还要检验算的对不对,谁愿意口头检验。 2、假设全是兔 我们再回到表格中,看看右起第一列中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿) 先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。 小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法) 5、阅读材料 三、练习巩固,反思提升。 四、总结:本节课你有什么收获?