1、自考重点线性代数资料仅供参考全国 7月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,AT表示方阵A的转置钜阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1设,则=()A-49B-7C7D492设A为3阶方阵,且,则()A-32B-8C8D323设A,B为n阶方阵,且AT=-A,BT=B,则下列命题正确的是()A(A+B)T=A+BB(AB)T=-ABCA2是对称矩阵DB2+A是对称阵
2、4设A,B,X,Y都是n阶方阵,则下面等式正确的是()A若A2=0,则A=0B(AB)2=A2B2C若AX=AY,则X=YD若A+X=B,则X=B-A5设矩阵A=,则秩(A)=()A1B2C3D46若方程组仅有零解,则k()A-2B-1C0D27实数向量空间V=(x1,x2,x3)|x1 +x3=0的维数是()A0B1C2D38若方程组有无穷多解,则=()A1B2C3D49设A=,则下列矩阵中与A相似的是()ABCD10设实二次型,则f()A正定B不定C负定D半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11设A=(-1,1,2)T
3、,B=(0,2,3)T,则|ABT|=_.12设三阶矩阵,其中为A的列向量,且|A|=2,则_.13设,且秩(A)=3,则a,b,c应满足_.14矩阵的逆矩阵是_.15三元方程x1+x3=1的通解是_.16已知A相似于,则|A-E|=_.17矩阵的特征值是_.18与矩阵相似的对角矩阵是_.19设A相似于,则A4_.20二次型f(x1,x2,x3)=x1x2-x1x3+x2x3的矩阵是_.三、计算题(本大题共6小题,每小题9分,共54分)21计算4阶行列式D=.22设A=,而X满足AX+E=A2+X,求X.23求向量组:的秩,并给出该向量组的一个极大无关组,同时将其余的向量表示成该极大无关组的线
4、性组合.24当为何值时,齐次方程组有非零解?并求其全部非零解.25已知1,1,-1是三阶实对称矩阵A的三个特征值,向量、是A的对应于的特征向量,求A的属于的特征向量.26求正交变换Y=PX,化二次型f(x1,x2,x3)=2x1x2+2x1x3-2x2x3为标准形.四、证明题(本大题6分)27设线性无关,证明也线性无关.全国 10月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵。 表示方阵A的行列式,r(A)表示矩阵A的秩。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选
5、项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设3阶方阵A的行列式为2,则( )A.-1B.C.D.12.设则方程的根的个数为( )A.0B.1C.2D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若则必有( )A.B. C. D. 4.设A,B是任意的n阶方阵,下列命题中正确的是( )A.B.C.D.5.设其中则矩阵A的秩为( )A.0B.1C.2D.36.设6阶方阵A的秩为4,则A的伴随矩阵A*的秩为( )A.0B.2C.3D.47.设向量=(1,-2,3)与=(2,k,6)正交,则数k为( )A.-10B.-4C.3D.108.已知
6、线性方程组无解,则数a=( )A.B.0C.D.19.设3阶方阵A的特征多项式为则( )A.-18B.-6C.6D.1810.若3阶实对称矩阵是正定矩阵,则A的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.设行列式其第3行各元素的代数余子式之和为_.12.设则_.13.设A是43矩阵且则_.14.向量组(1,2),(2,3)(3,4)的秩为_.15.设线性无关的向量组1,2,r可由向量组1,2,,s线性表示,则r与s的关系为_.16.设方程组有
7、非零解,且数则_.17.设4元线性方程组的三个解1,2,3,已知则方程组的通解是_.18.设3阶方阵A的秩为2,且则A的全部特征值为_.19.设矩阵有一个特征值对应的特征向量为则数a=_.20.设实二次型已知A的特征值为-1,1,2,则该二次型的规范形为_.三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵其中均为3维列向量,且求22.解矩阵方程23.设向量组1=(1,1,1,3)T,2=(-1,-3,5,1)T,3=(3,2,-1,p+2)T,4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组,(1)确定当取何
8、值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A的特征值为及方阵(1)求B的特征值;(2)求B的行列式.26.用配方法化二次型为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A是3阶反对称矩阵,证明全国 7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,AT表示矩阵A的转置矩阵;A*表示A的伴随矩阵;r(A)表示矩阵A的秩;| A |表示A的行列式;E表示单位矩阵。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项
9、中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设3阶方阵A=(1,2,3),其中i(i=1,2,3)为A的列向量,若| B |=|(1+22,2,3)|=6,则| A |=( )A.-12B.-6C.6D.122.计算行列式=( )A.-180B.-120C.120D.1803.若A为3阶方阵且| A-1 |=2,则| 2A |=( )A.B.2C.4D.84.设1,2,3,4都是3维向量,则必有( )A.1,2,3,4线性无关B.1,2,3,4线性相关C.1可由2,3,4线性表示D.1不可由2,3,4线性表示5.若A为6阶方阵,齐次线性方程组Ax=0的
10、基础解系中解向量的个数为2,则r(A)=( )A.2B.3C.4D.56.设A、B为同阶方阵,且r(A)=r(B),则( )A.A与B相似B.| A |=| B |C.A与B等价D.A与B合同7.设A为3阶方阵,其特征值分别为2,1,0则| A+2E |=( )A.0B.2C.3D.248.若A、B相似,则下列说法错误的是( )A.A与B等价B.A与B合同C.| A |=| B |D.A与B有相同特征值9.若向量=(1,-2,1)与=(2,3,t)正交,则t=( )A.-2B.0C.2D.410.设3阶实对称矩阵A的特征值分别为2,1,0,则( )A.A正定B.A半正定C.A负定D.A半负定二
11、、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.设A=,B=,则AB=_.12.设A为3阶方阵,且| A |=3,则| 3A-1 |=_.13.三元方程x1+x2+x3=1的通解是_.14.设=(-1,2,2),则与反方向的单位向量是_.15.设A为5阶方阵,且r(A)=3,则线性空间W=x | Ax=0的维数是_.16.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=_.17.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_.18.实对称矩阵所对应的二次型f (x1, x2, x3)=_.19.设3元
12、非齐次线性方程组Ax=b有解1=,2=且r(A)=2,则Ax=b的通解是_.20.设=,则A=T的非零特征值是_.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式D=22.设矩阵X满足方程 X=求X.23.求非齐次线性方程组的通解.24.求向量组1=(1,2,-1,4),2=(9,100,10,4),3=(-2,-4,2,-8)的秩和一个极大无关组.25.已知A=的一个特征向量=(1,1,-1)T,求a,b及所对应的特征值,并写出对应于这个特征值的全部特征向量.26.设A=,试确定a使r(A)=2.四、证明题(本大题共1小题,6分)27.若1,2,3是Ax=b(b0)的线
13、性无关解,证明2-l,3-l是对应齐次线性方程组Ax=0的线性无关解.全国 4月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的铁。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。13阶行列式=中元素的代数余了式=( )A-2B-1C1D22设矩阵A=,B=,P1=,P2=,则必有( )AP1P2A=BBP2P1A=BCAP1P2=BDAP2P
14、1=B3设n阶可逆矩阵A、B、C满足ABC=E,则B-1=( )AA-1C-1BC-1A-1CACDCA4设3阶矩阵A=,则A2的秩为( ) A0B1C2D35设是一个4维向量组,若已知能够表为的线性组合,且表示法惟一,则向量组的秩为( )A1B2C3D46设向量组线性相关,则向量组中( )A必有一个向量能够表为其余向量的线性组合B必有两个向量能够表为其余向量的线性组合C必有三个向量能够表为其余向量的线性组合D每一个向量都能够表为其余向量的线性组合7设是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,能够作为该方程组基础解系的是( )ABCD8若2阶矩阵A相似于矩阵B=,E为2阶单位矩
15、阵,则与矩阵E-A相似的矩阵是( )ABCD9设实对称矩阵A=,则3元二次型f(x1,x2,x3)=xTAx的规范形为( )ABCD10若3阶实对称矩阵A=()是正定矩阵,则A的正惯性指数为( )A0B1C2D3二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。11已知3阶行列式=6,则=_.12设3阶行列式D3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D3=_.13设A=,则A2-2A+E=_.14.设A为2阶矩阵,将A的第2列的(-2)倍加到第1列得到矩阵B.若B=,则A=_.15.设3阶矩阵A=,则A-1=
16、_.16.设向量组=(a,1,1),=(1,-2,1), =(1,1,-2)线性相关,则数a=_.17.已知x1=(1,0,-1)T, x2=(3,4,5)T是3元非齐次线性方程组Ax=b的两个解向量,则对应齐次线性方程组Ax=0有一个非零解向量=_.18.设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为=(1,1)T,=(1,k)T,则数k=_.19.已知3阶矩阵A的特征值为0,-2,3,且矩阵B与A相似,则|B+E|=_.20.二次型f(x1,x2,x3)=(x1-x2)2+(x2-x3)2的矩阵A=_.三、计算题(本大题共6小题,每小题9分,共54分)21.已知3阶行列式=中
17、元素的代数余子式A12=8,求元素的代数余子式A21的值.22.已知矩阵A,B=,矩阵X满足AX+B=X,求X.23.求向量组=(1,1,1,3)T,=(-1,-3,5,1)T,=(3,2,-1,4)T,=(-2,-6,10,2)T的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.24.设3元齐次线性方程组,(1)确定当a为何值时,方程组有非零解;(2)当方程组有非零解时,求出它的基础解系和全部解.25.设矩阵B=,(1)判定B是否可与对角矩阵相似,说明理由;(2)若B可与对角矩阵相似,求对角矩阵和可逆矩阵P,使P-1BP=26.设3元二次型,求正交变换x=Py,将二次型化为标准
18、形.四、证明题(本题6分)27.已知A是n阶矩阵,且满足方程A2+2A=0,证明A的特征值只能是0或-2.全国 1月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,AT表示矩阵A的转置矩阵;A*表示A的伴随矩阵;秩(A)表示矩阵A的秩;|A|表示A的行列式;E表示单位矩阵。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设A为三阶方阵且则()A.-108B.-12C.12D.1082.如果方程组有非零解,则k=()A.-2B.-1C.1D.23.设
19、A、B为同阶方阵,下列等式中恒正确的是()A.AB=BAB.C.D.4.设A为四阶矩阵,且则()A.2B.4C.8D.125.设可由向量1 =(1,0,0)2 =(0,0,1)线性表示,则下列向量中只能是A.(2,1,1)B.(-3,0,2)C.(1,1,0)D.(0,-1,0)6.向量组1 ,2 ,s 的秩不为s(s)的充分必要条件是()A. 1 ,2 ,s 全是非零向量B. 1 ,2, ,s 全是零向量C. 1 ,2, ,s中至少有一个向量可由其它向量线性表出D. 1 ,2, ,s 中至少有一个零向量7.设A为m矩阵,方程AX=0仅有零解的充分必要条件是()A.A的行向量组线性无关B.A的
20、行向量组线性相关C.A的列向量组线性无关D.A的列向量组线性相关8.设A与B是两个相似n阶矩阵,则下列说法错误的是()A.B.秩(A)=秩(B)C.存在可逆阵P,使P-1AP=BD.E-A=E-B9.与矩阵A=相似的是()A.B.C.D.10.设有二次型则()A.正定B.负定C.不定D.半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.若则k=_.12.设A=,B=则AB=_.13.设A=,则A-1= _.14.设A为3矩阵,且方程组Ax=0的基础解系含有两个解向量,则秩(A)= _.15.已知A有一个特征值-2,则B=A+2E必
21、有一个特征值_.16.方程组的通解是_. 17.向量组1 =(1,0,0) 2 =(1,1,0), 3 =(-5,2,0)的秩是_.18.矩阵A=的全部特征向量是_.19.设三阶方阵A的特征值分别为-2,1,1,且B与A相似,则=_.20.矩阵A=所对应的二次型是_.三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式的值.22.设A=,求A.23.设A=,B=,且A,B,X满足(E-BA)求X,X24.求向量组1 =(1,-1,2,4)2 =(0,3,1,2), 3 =(3,0,7,14), 4 =(2,1,5,6), 5 =(1,-1,2,0)的一个极大线性无关组.25.求非齐次方程组的通解.26. 设A=,求P使为对角矩阵.四、证明题(本大题共1小题,6分)27.设1,2,3 是齐次方程组A x =0的基础解系.证明1,1+2, 1 +2 +3也是Ax =0的基础解系