ImageVerifierCode 换一换
格式:DOCX , 页数:28 ,大小:274.46KB ,
资源ID:7207672      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7207672.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(自考重点线性代数.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

自考重点线性代数.docx

1、自考重点线性代数资料仅供参考全国 7月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,AT表示方阵A的转置钜阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1设,则=()A-49B-7C7D492设A为3阶方阵,且,则()A-32B-8C8D323设A,B为n阶方阵,且AT=-A,BT=B,则下列命题正确的是()A(A+B)T=A+BB(AB)T=-ABCA2是对称矩阵DB2+A是对称阵

2、4设A,B,X,Y都是n阶方阵,则下面等式正确的是()A若A2=0,则A=0B(AB)2=A2B2C若AX=AY,则X=YD若A+X=B,则X=B-A5设矩阵A=,则秩(A)=()A1B2C3D46若方程组仅有零解,则k()A-2B-1C0D27实数向量空间V=(x1,x2,x3)|x1 +x3=0的维数是()A0B1C2D38若方程组有无穷多解,则=()A1B2C3D49设A=,则下列矩阵中与A相似的是()ABCD10设实二次型,则f()A正定B不定C负定D半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11设A=(-1,1,2)T

3、,B=(0,2,3)T,则|ABT|=_.12设三阶矩阵,其中为A的列向量,且|A|=2,则_.13设,且秩(A)=3,则a,b,c应满足_.14矩阵的逆矩阵是_.15三元方程x1+x3=1的通解是_.16已知A相似于,则|A-E|=_.17矩阵的特征值是_.18与矩阵相似的对角矩阵是_.19设A相似于,则A4_.20二次型f(x1,x2,x3)=x1x2-x1x3+x2x3的矩阵是_.三、计算题(本大题共6小题,每小题9分,共54分)21计算4阶行列式D=.22设A=,而X满足AX+E=A2+X,求X.23求向量组:的秩,并给出该向量组的一个极大无关组,同时将其余的向量表示成该极大无关组的线

4、性组合.24当为何值时,齐次方程组有非零解?并求其全部非零解.25已知1,1,-1是三阶实对称矩阵A的三个特征值,向量、是A的对应于的特征向量,求A的属于的特征向量.26求正交变换Y=PX,化二次型f(x1,x2,x3)=2x1x2+2x1x3-2x2x3为标准形.四、证明题(本大题6分)27设线性无关,证明也线性无关.全国 10月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵。 表示方阵A的行列式,r(A)表示矩阵A的秩。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选

5、项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设3阶方阵A的行列式为2,则( )A.-1B.C.D.12.设则方程的根的个数为( )A.0B.1C.2D.33.设A为n阶方阵,将A的第1列与第2列交换得到方阵B,若则必有( )A.B. C. D. 4.设A,B是任意的n阶方阵,下列命题中正确的是( )A.B.C.D.5.设其中则矩阵A的秩为( )A.0B.1C.2D.36.设6阶方阵A的秩为4,则A的伴随矩阵A*的秩为( )A.0B.2C.3D.47.设向量=(1,-2,3)与=(2,k,6)正交,则数k为( )A.-10B.-4C.3D.108.已知

6、线性方程组无解,则数a=( )A.B.0C.D.19.设3阶方阵A的特征多项式为则( )A.-18B.-6C.6D.1810.若3阶实对称矩阵是正定矩阵,则A的3个特征值可能为( )A.-1,-2,-3B.-1,-2,3C.-1,2,3D.1,2,3二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.设行列式其第3行各元素的代数余子式之和为_.12.设则_.13.设A是43矩阵且则_.14.向量组(1,2),(2,3)(3,4)的秩为_.15.设线性无关的向量组1,2,r可由向量组1,2,,s线性表示,则r与s的关系为_.16.设方程组有

7、非零解,且数则_.17.设4元线性方程组的三个解1,2,3,已知则方程组的通解是_.18.设3阶方阵A的秩为2,且则A的全部特征值为_.19.设矩阵有一个特征值对应的特征向量为则数a=_.20.设实二次型已知A的特征值为-1,1,2,则该二次型的规范形为_.三、计算题(本大题共6小题,每小题9分,共54分)21.设矩阵其中均为3维列向量,且求22.解矩阵方程23.设向量组1=(1,1,1,3)T,2=(-1,-3,5,1)T,3=(3,2,-1,p+2)T,4=(3,2,-1,p+2)T问p为何值时,该向量组线性相关?并在此时求出它的秩和一个极大无关组.24.设3元线性方程组,(1)确定当取何

8、值时,方程组有惟一解、无解、有无穷多解?(2)当方程组有无穷多解时,求出该方程组的通解(要求用其一个特解和导出组的基础解系表示).25.已知2阶方阵A的特征值为及方阵(1)求B的特征值;(2)求B的行列式.26.用配方法化二次型为标准形,并写出所作的可逆线性变换.四、证明题(本题6分)27.设A是3阶反对称矩阵,证明全国 7月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,AT表示矩阵A的转置矩阵;A*表示A的伴随矩阵;r(A)表示矩阵A的秩;| A |表示A的行列式;E表示单位矩阵。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项

9、中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设3阶方阵A=(1,2,3),其中i(i=1,2,3)为A的列向量,若| B |=|(1+22,2,3)|=6,则| A |=( )A.-12B.-6C.6D.122.计算行列式=( )A.-180B.-120C.120D.1803.若A为3阶方阵且| A-1 |=2,则| 2A |=( )A.B.2C.4D.84.设1,2,3,4都是3维向量,则必有( )A.1,2,3,4线性无关B.1,2,3,4线性相关C.1可由2,3,4线性表示D.1不可由2,3,4线性表示5.若A为6阶方阵,齐次线性方程组Ax=0的

10、基础解系中解向量的个数为2,则r(A)=( )A.2B.3C.4D.56.设A、B为同阶方阵,且r(A)=r(B),则( )A.A与B相似B.| A |=| B |C.A与B等价D.A与B合同7.设A为3阶方阵,其特征值分别为2,1,0则| A+2E |=( )A.0B.2C.3D.248.若A、B相似,则下列说法错误的是( )A.A与B等价B.A与B合同C.| A |=| B |D.A与B有相同特征值9.若向量=(1,-2,1)与=(2,3,t)正交,则t=( )A.-2B.0C.2D.410.设3阶实对称矩阵A的特征值分别为2,1,0,则( )A.A正定B.A半正定C.A负定D.A半负定二

11、、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.设A=,B=,则AB=_.12.设A为3阶方阵,且| A |=3,则| 3A-1 |=_.13.三元方程x1+x2+x3=1的通解是_.14.设=(-1,2,2),则与反方向的单位向量是_.15.设A为5阶方阵,且r(A)=3,则线性空间W=x | Ax=0的维数是_.16.设A为3阶方阵,特征值分别为-2,1,则| 5A-1 |=_.17.若A、B为5阶方阵,且Ax=0只有零解,且r(B)=3,则r(AB)=_.18.实对称矩阵所对应的二次型f (x1, x2, x3)=_.19.设3元

12、非齐次线性方程组Ax=b有解1=,2=且r(A)=2,则Ax=b的通解是_.20.设=,则A=T的非零特征值是_.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式D=22.设矩阵X满足方程 X=求X.23.求非齐次线性方程组的通解.24.求向量组1=(1,2,-1,4),2=(9,100,10,4),3=(-2,-4,2,-8)的秩和一个极大无关组.25.已知A=的一个特征向量=(1,1,-1)T,求a,b及所对应的特征值,并写出对应于这个特征值的全部特征向量.26.设A=,试确定a使r(A)=2.四、证明题(本大题共1小题,6分)27.若1,2,3是Ax=b(b0)的线

13、性无关解,证明2-l,3-l是对应齐次线性方程组Ax=0的线性无关解.全国 4月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:在本卷中,AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E表示单位矩阵,|A|表示方阵A的行列式,r(A)表示矩阵A的铁。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。13阶行列式=中元素的代数余了式=( )A-2B-1C1D22设矩阵A=,B=,P1=,P2=,则必有( )AP1P2A=BBP2P1A=BCAP1P2=BDAP2P

14、1=B3设n阶可逆矩阵A、B、C满足ABC=E,则B-1=( )AA-1C-1BC-1A-1CACDCA4设3阶矩阵A=,则A2的秩为( ) A0B1C2D35设是一个4维向量组,若已知能够表为的线性组合,且表示法惟一,则向量组的秩为( )A1B2C3D46设向量组线性相关,则向量组中( )A必有一个向量能够表为其余向量的线性组合B必有两个向量能够表为其余向量的线性组合C必有三个向量能够表为其余向量的线性组合D每一个向量都能够表为其余向量的线性组合7设是齐次线性方程组Ax=0的一个基础解系,则下列解向量组中,能够作为该方程组基础解系的是( )ABCD8若2阶矩阵A相似于矩阵B=,E为2阶单位矩

15、阵,则与矩阵E-A相似的矩阵是( )ABCD9设实对称矩阵A=,则3元二次型f(x1,x2,x3)=xTAx的规范形为( )ABCD10若3阶实对称矩阵A=()是正定矩阵,则A的正惯性指数为( )A0B1C2D3二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。11已知3阶行列式=6,则=_.12设3阶行列式D3的第2列元素分别为1,-2,3,对应的代数余子式分别为-3,2,1,则D3=_.13设A=,则A2-2A+E=_.14.设A为2阶矩阵,将A的第2列的(-2)倍加到第1列得到矩阵B.若B=,则A=_.15.设3阶矩阵A=,则A-1=

16、_.16.设向量组=(a,1,1),=(1,-2,1), =(1,1,-2)线性相关,则数a=_.17.已知x1=(1,0,-1)T, x2=(3,4,5)T是3元非齐次线性方程组Ax=b的两个解向量,则对应齐次线性方程组Ax=0有一个非零解向量=_.18.设2阶实对称矩阵A的特征值为1,2,它们对应的特征向量分别为=(1,1)T,=(1,k)T,则数k=_.19.已知3阶矩阵A的特征值为0,-2,3,且矩阵B与A相似,则|B+E|=_.20.二次型f(x1,x2,x3)=(x1-x2)2+(x2-x3)2的矩阵A=_.三、计算题(本大题共6小题,每小题9分,共54分)21.已知3阶行列式=中

17、元素的代数余子式A12=8,求元素的代数余子式A21的值.22.已知矩阵A,B=,矩阵X满足AX+B=X,求X.23.求向量组=(1,1,1,3)T,=(-1,-3,5,1)T,=(3,2,-1,4)T,=(-2,-6,10,2)T的一个极大无关组,并将向量组中的其余向量用该极大无关组线性表出.24.设3元齐次线性方程组,(1)确定当a为何值时,方程组有非零解;(2)当方程组有非零解时,求出它的基础解系和全部解.25.设矩阵B=,(1)判定B是否可与对角矩阵相似,说明理由;(2)若B可与对角矩阵相似,求对角矩阵和可逆矩阵P,使P-1BP=26.设3元二次型,求正交变换x=Py,将二次型化为标准

18、形.四、证明题(本题6分)27.已知A是n阶矩阵,且满足方程A2+2A=0,证明A的特征值只能是0或-2.全国 1月高等教育自学考试线性代数(经管类)试题课程代码:04184试卷说明:在本卷中,AT表示矩阵A的转置矩阵;A*表示A的伴随矩阵;秩(A)表示矩阵A的秩;|A|表示A的行列式;E表示单位矩阵。一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。1.设A为三阶方阵且则()A.-108B.-12C.12D.1082.如果方程组有非零解,则k=()A.-2B.-1C.1D.23.设

19、A、B为同阶方阵,下列等式中恒正确的是()A.AB=BAB.C.D.4.设A为四阶矩阵,且则()A.2B.4C.8D.125.设可由向量1 =(1,0,0)2 =(0,0,1)线性表示,则下列向量中只能是A.(2,1,1)B.(-3,0,2)C.(1,1,0)D.(0,-1,0)6.向量组1 ,2 ,s 的秩不为s(s)的充分必要条件是()A. 1 ,2 ,s 全是非零向量B. 1 ,2, ,s 全是零向量C. 1 ,2, ,s中至少有一个向量可由其它向量线性表出D. 1 ,2, ,s 中至少有一个零向量7.设A为m矩阵,方程AX=0仅有零解的充分必要条件是()A.A的行向量组线性无关B.A的

20、行向量组线性相关C.A的列向量组线性无关D.A的列向量组线性相关8.设A与B是两个相似n阶矩阵,则下列说法错误的是()A.B.秩(A)=秩(B)C.存在可逆阵P,使P-1AP=BD.E-A=E-B9.与矩阵A=相似的是()A.B.C.D.10.设有二次型则()A.正定B.负定C.不定D.半正定二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。11.若则k=_.12.设A=,B=则AB=_.13.设A=,则A-1= _.14.设A为3矩阵,且方程组Ax=0的基础解系含有两个解向量,则秩(A)= _.15.已知A有一个特征值-2,则B=A+2E必

21、有一个特征值_.16.方程组的通解是_. 17.向量组1 =(1,0,0) 2 =(1,1,0), 3 =(-5,2,0)的秩是_.18.矩阵A=的全部特征向量是_.19.设三阶方阵A的特征值分别为-2,1,1,且B与A相似,则=_.20.矩阵A=所对应的二次型是_.三、计算题(本大题共6小题,每小题9分,共54分)21.计算四阶行列式的值.22.设A=,求A.23.设A=,B=,且A,B,X满足(E-BA)求X,X24.求向量组1 =(1,-1,2,4)2 =(0,3,1,2), 3 =(3,0,7,14), 4 =(2,1,5,6), 5 =(1,-1,2,0)的一个极大线性无关组.25.求非齐次方程组的通解.26. 设A=,求P使为对角矩阵.四、证明题(本大题共1小题,6分)27.设1,2,3 是齐次方程组A x =0的基础解系.证明1,1+2, 1 +2 +3也是Ax =0的基础解系

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服