收藏 分销(赏)

醛糖还原酶基因敲除对小鼠脊髓损伤的保护作用及机制研究.pdf

上传人:自信****多点 文档编号:715111 上传时间:2024-02-20 格式:PDF 页数:6 大小:3.89MB
下载 相关 举报
醛糖还原酶基因敲除对小鼠脊髓损伤的保护作用及机制研究.pdf_第1页
第1页 / 共6页
醛糖还原酶基因敲除对小鼠脊髓损伤的保护作用及机制研究.pdf_第2页
第2页 / 共6页
醛糖还原酶基因敲除对小鼠脊髓损伤的保护作用及机制研究.pdf_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、公共问一作百Chinese Journal of Neuroanatomy志杂解经部神2023,39(3):303308醛糖还原酶基因敲除对小鼠脊髓损伤的保护作用及机制研究姚艳,王玉珏,李渊博,高小川”,刘芳芳3*,张静*(1.延安大学医学院医学研究实验中心,延安7 16 0 0;2.空军军医大学基础医学院学员六大队二十四队2 0 2 0 级,西安7 10 0 32;3.空军军医大学基础医学院神经生物学教研室,西安7 10 0 32)摘要目的:研究醛糖还原酶(AR)在小鼠脊髓损伤(SCI)的作用及分子机制。方法:利用野生型(WT)小鼠和AR敲除(ARKO)小鼠,制备小鼠脊髓钳夹伤模型,通过BM

2、S评分对比观察损伤后两种小鼠在不同时间点(3、7、14和2 8 d)的运动功能恢复情况;采用免疫荧光染色观察小胶质细胞活化状态和损伤面积恢复程度;利用试剂盒和WesternBlot检测损伤后小鼠脊髓组织中诱导型一氧化氮合酶(iNOS)、磷酸化核因子-kB(NF-k B)家族p65、4-羟基王烯醛(4-HNE)和活性氧(ROS)的表达。通过体外培养来源于小鼠小胶质细胞系BV2,给予脂多糖(LPS)及4-HNE联合刺激,利用免疫荧光染色观察BV2细胞极化状态,WestermBlot检测iNOS和p-p65蛋白表达水平。结果:与WT小鼠相比,AR基因敲除促进小鼠脊髓损伤后的运动功能恢复,损伤区面积显

3、著减小,并且抑制小鼠脊髓损伤区小胶质细胞活化,NF-kB信号通路相关炎性分子iNOS表达水平明显下调。WT小鼠和ARKO小鼠在脊髓损伤后ROS、4-H NE的含量逐渐上升,在损伤后7 d表达较高,并且具有相似的表达变化模式。LPS联合4-HNE刺激BV2细胞系,可抑制M1型相关分子白细胞分化抗原16/32(CD16/32)、i NO S和p-p65的表达,促进M2型相关分子精氨酸酶1(Arg-1)的表达。结论:AR敲除促进小鼠脊髓损伤后4-HNE的累积,减少NF-kB信号通路的激活,抑制小胶质细胞的活化,从而促进运动功能的恢复。关键词脊髓损伤;小胶质细胞;醛糖还原酶;4-羟基王烯醛;小鼠D0I

4、:10.16557/ki.1000-7547.2023.03.008Protective effect and mechanism of aldose reductase geneknockout on spinal cord injury in miceYAO Yan,WANG Yujue,LI Yuanbo,GAO Xiaochuan,LIU Fangfang*,ZHANG Jing(1.Medical Research and Experiment Center,Medical College,Yanan University,Yanan 71600;2.Class 2020,thetw

5、enty-fourth team of the Sixth Battalion,School of Basic Medicine,Air Force Medical University,Xian 710032;3.Department of Neurobiology,School of Basic Medicine,Air Force Medical University,Xian 710032,China)Abstract Objective:To investigate the role of aldose reductase(AR)and the relevant molecular

6、mechanisms in aspinal cord injury(SCI)mouse model.Methods:Wild-type(WT)mice and AR gene knockout(AR KO)mice wereused to establish a mouse model of compression SCI.The restoration of mouse locomotor functions at different timepoints(3,7,14,and 28 d)after the induction of injury was assessed and compa

7、red using the Basso Mouse Scale Score(BMS);immunofluorescence(IF)staining was used to determine the status of microglial cell activation and the recov-ery of the lesion area;test kits and Western Blot were used to detect the expression levels of inducible nitric oxide syn-thase(iNOS),nuclear factor-

8、kB(NF-k B)f a mi l y p h o s p h o r y l a t e d p 6 5(p-p 6 5),4-h y d r o x y n o n e n a l (4-H NE),a n d基金项目:国家自然科学基金(8 18 6 0 444);陕西省自然科学基础研究计划(2 0 2 3-JC-YB-819);陕西省卫生健康科研基金项目(2 0 2 1D053)*通信作者:张静日电话:0 911-2 6 50 158,E-mail:;刘芳芳电话:0 2 9-8 47 7 450 3,E-mail:3042023年5月第39 卷第3期神经解剖学杂志,reactive o

9、xygen species(ROS)in the post-injury mouse spinal cord tissues.The in vitro experiments were performed onthe mouse BV2 microglial cell line stimulated with lipopolysaccharide(LPS)and 4-HNE.The polarization states ofBV2 cells were determined by IF staining,while the expression levels of iNOS and p-p6

10、5 were evaluated by WesternBlot.Results:Compared with WT mice,knockout of the AR gene promoted the restoration of locomotor functions,sig-nificantly reduced the lesion areas,and inhibited microglia activation after SCI.AR knockout also significantly downreg-ulated the expression level of iNOS,an inf

11、lammatory molecule associated with the NF-kB signaling pathway,in the spi-nal cord lesions of mice.Both WT mice and AR KO mice exhibited increasing ROS and 4-HNE levels gradually,whichwere highest at 7 d post-SCI,with similar changes in the patterns of expression.Stimulation of BV2 cells using LPSco

12、mbined with 4-HNE inhibited the expression of molecules related to the M1-type,including cluster of differentiation16/32(CD16/32),iNOS,and p-p65,and promoted the expression of arginase 1(Arg-1),a molecule related to the M2-type.Conclusion:Knockout of AR increases the accumulation of 4-HNE after SCI

13、in mice,thereby decreases activation ofNF-kB signaling pathway and inhibits the activation of microglia to promote the restoration of locomotor functions.Key wordsspinal cord injury(SCI);aldose reductase(AR);microglia;4-hydroxynonenal(4-HNE);mouse脊髓损伤(spinal cord injury,SCI)是全球范围内预后极差的致残性疾病之一1。创伤性损伤

14、引发复杂的局部炎症反应,是 SCI后继发性损伤的重要病理过程,其中小胶质细胞是引起这一反应的重要炎性细胞2 。小胶质细胞具有较强的可塑性,根据组织微环境中存在的不同刺激因子,可极化为两种主要亚群,即“经典激活 M1型和“替代激活 M2型3。脊髓损伤后不同时期,小胶质细胞的极化方向是一个动态、连续变化的过程,在不同阶段对小胶质细胞极化方向的调控,是脊髓损伤治疗的研究热点。醛糖还原酶(aldose reductase,A R)是多元醇代谢通路的关键限速酶,可以将葡萄糖还原成山梨醇并最终生成果糖4。近年来研究发现AR功能不仅仅局限于糖代谢的过程中,它还可以高效地催化多种不饱和脂质醛类发生还原反应,如

15、4-羟基王烯醛(4-h y d r o x y n o n e n a l,4-H NE),并参与到核因子kB(n u c l e a r f a c t o r-k B,NF-k B)炎性通路的信号转导中,在多种炎性疾病中发挥着重要的作用5-7 。脊髓损伤的过程中伴随着大量活性氧(reactive oxygen spe-cies,ROS)的释放,小胶质细胞内氧化还原的状态对其极化方向的作用及其机制尚不明确。本研究利用ARKO小鼠,观察其脊髓损伤后对运动功能及损伤面积恢复的影响,进一步探讨AR基因敲除对小胶质极化状态的影响及其调控机制,为今后的临床治疗提供新的策略。材料和方法1.材料1.1实验

16、动物810周龄雄性C57BL/6野生型(WT)小鼠、AR敲除(ARKO)小鼠,体重2 5 2 0 g,由西安科奥生物科技有限公司提供,生长环境为SPF级,自由摄食,光照条件为12 h明/12 h暗。动物实验严格遵守空军军医大学动物实验福利与伦理规定。1.2丝细胞株来源于小鼠小胶质细胞系BV2购自于深圳华拓生物细胞库。1.3主要试剂和仪器LPS、D A PI染色液、ROS检测试剂盒均购自于购自于美国Sigma-Aldrich公司,4-HNE购自于美国CaymanChemical公司,兔抗Iba-1单克隆抗体、兔抗iNOS多克隆抗体、兔抗4-HNE多克隆抗体、免抗p-p65和免抗Arg-1多克隆抗

17、体均购自于英国Abcam公司,大鼠抗CD16/32单克隆抗体购自于美国BDPharmingen公司,AlexaFluor594偶联的驴抗兔IgG(H+L)、A le x a Flu o r 48 8 偶联的驴抗兔、驴抗大鼠IgG(H+L)抗体均购自于美国JacksonImmunoResearch公司,辣根过氧化物酶(horseradishperoxidase,HRP)偶联的山羊抗兔、山羊抗小鼠IgG(H+L)抗体均购自于杭州景杰生物科技有限公司。所用主要仪器包括激光共聚焦显微镜FV1000购自于日本Olyympus公司,酶标仪购自于瑞士Tecan公司,West-ernBlot成像系统购自于美国

18、ProteinSimple公司。2.方法2.1脊髓损伤模型制备WT小鼠和ARKO小鼠每组6 只,按50 mg/kg腹腔注射1%戊巴比妥钠溶液进行麻醉,剪开背部皮肤充分暴露脊柱,用咬骨钳打开T。T 1o 椎板,注意不要损伤硬脊膜,用尖端0.2mmDumont镊向脊髓进行侧压持续2 0 s,逐层缝合。手术后,每天进行两次人工排尿。sham组小鼠行椎板切除术,无钳夹损伤。2.2行为学评分旷场实验评分(open field score)305艳:醛糖还原酶基因敲除对小鼠脊髓损伤的保护作用及机制研究姚和BMS评分(BassoMouse Scale)评分用于评估小鼠脊髓损伤后运动功能恢复情况8 。术前1周

19、,小鼠每天适应实验场地。在脊髓损伤后0、3、7、14和2 8d,将小鼠置于该区域,通过视频录像观察4 min,采用双盲法进行评分。2.3BV2细胞培养及刺激BV2细胞传代后种于6孔培养板中,每孔6.510 5个细胞,分为3组:对照组(control)、10 0 n g/m l LPS处理组和10 0 ng/mlLPS+10 mol/L4-HNE处理组,刺激2 4 h。2.4免疫荧光染色组织处理:WT小鼠和ARKO小鼠脊髓损伤后7、14d,经灌注固定后,取损伤区周围0.6 cm脊髓组织,进行冰冻切片,厚度为12 m;细胞处理:DPBS洗涤3次,含4%多聚甲醛的磷酸缓冲液固定2 0 min,D P

20、BS洗涤6 次后备用。用含有5%BSA+0.3%TritonX-100封闭液室温孵育1h,用一抗稀释液稀释一抗兔抗Iba-1(1:2 0 0 0)或兔Arg-1(1:2 0 0)、大鼠抗CD16/32(1:10 0)4孵育过夜,PBS轻柔洗涤3次后,孵育荧光二抗(1:2 0 0 0)室温避光孵育2 h,D A PI稀释液(1:50 0 0 0)室温避光孵育6 min,PBS轻柔洗涤6 次后,含有50%甘油PBS封片,利用激光共聚焦显微镜FV1000进行采图。2.5Western Blot取损伤区脊髓组织约40 mg加人RIPA裂解液40 0 l;6孔培养板中每孔加人12 0lRIPA裂解液。充

21、分裂解后上样进行SDS-PAGE凝胶电泳,恒流30 0 mA湿转6 0 min,5%脱脂奶粉封闭液室温封闭1h,用一抗稀释液稀释一抗兔抗iN-OS(1:2 0 0 0)、兔抗p-p65(1:10 0 0)、兔抗4-HNE(1:50 0)和小鼠抗-actin(1:8 0 0 0)4孵育过夜,TBST洗膜6 次,每次5min,孵育二抗HRP偶联的山羊抗兔(1:8 0 0 0)、山羊抗小鼠(1:8 0 0 0)室温孵育1h,TBST洗涤6 次后进行化学发光检测分析。2.6 ROS 检测在脊髓损伤后0、1、3、7、14和2 8d,小鼠脱颈处死,取损伤区周围脊髓组织,用酶消化后与DCFH-DA荧光探针3

22、7 孵育30 min,PBS洗涤3次后,用多功能酶标仪分析每组平均荧光强度。2.7统计学分析斤所有数据均以均数标准差(xs)表示,采用GraphpadPrism8.0.1软件进行Students t 检验和 two-way repeated-measures ANOVA分析。P0.05表示差异有统计学意义。结果1.AR基因敲除促进小鼠脊髓损伤后的运动恢复我们通过旷场实验评分和BMS量表对WT和ARKO小鼠SCI后不同时间点运动功能恢复情况进行评估。在损伤早期(3d)两组间尚无显著差异;至损伤后第7 d,ARKO小鼠组运动功能得到明显改善(P0.05);损伤后2 8 d,WT和ARKO小鼠的运动

23、恢复能力均达到平台期,WT小鼠的BMS平均评分为4.6分,而ARKO小鼠的BMS平均评分为6.4分(P0.01,Fig.1A,B)。通过Iba-1免疫荧光染色观察损伤区胶质瘢痕形成情况,用于评估脊髓损伤后损伤区面积大小变化。损伤后第14d,与WT小鼠相比,ARKO小鼠损伤区面积显著减小(P0.01,Fig.1C,D)。表明ARKO可以促进小鼠SCI后的运动功能恢复。6WT10mWTARKO8ARKOb2b2003714280371428ADays post-sciBDays post-sci6r(zww)ealeKanfu4a20WTARKOCDFig.1 AR KO promotes the

24、 restoration of locomotor functions afer SCI in mice.A:Open field score was used to assess the restorationstatus of the locomotor functions in WT and AR KO mice at 3,7,14,and 28 days post-SCI.B:BMS score.n=6,P0.05,bP0.01 us WT mice.C:IF staining for Iba-1 in the spinal cord lesions was performed on

25、WT and AR KO mice 14days post-injury.D:The areas of the lesions were calculated for both groups.P0.01 us WT mice.Bar=400 m.3062023年5月第39 卷第3期神经解剖学杂志,2.AR基因敲除抑制小鼠脊髓损伤后小胶质细胞活化在脊髓损伤后7 d,采用Iba-1免疫荧光染色结果显示,WT小鼠脊髓损伤周围小胶质细胞明显活化,细胞突起变短,胞体增大,呈现经典M1型形态阿米巴样改变;ARKO小鼠活化小胶质细胞数量显著减少,细胞突起分支较多(Fig.2A)。NF-k B信号通路是参与炎

26、性反应最重要的通路之一。WT、A R K O小鼠脊髓损伤后7 d损伤区WesternBlot结果显示,ARKO小鼠iNOS表达水平较WT小鼠显著下降(P 0.0 0 1),P-p 6 5表达两组之间没有显著差异(P=0.12 97,Fi g.2 B,C)。表明ARKO抑制脊髓损伤后小胶质细胞的活化,减弱NF-kB信号通路激活的程度。Iba-1DAPIMergeLMA20ShamWT2.0mARKObaiNOS130kDa151.5101.0P-p6565kDa50.5-actin42kDaBCD0.0ShamWTARKOShamWTARKOFig.2 AR KO inhibits microg

27、lia activation after SCI in mice.A:IF staining for Iba-1(green)in WT and AR KO mice 7 days post-SCI.B:Representative Western Blot bands of proteins in tissues from spinal cord lesions in WT and AR KO mice.C:Semi-quantitative analysis of iNOS expression.P0.001 us Sham group,bP0.001 us WT mice.D:Semi-

28、quantitative analysisof p-p65 expression.P0.01 us Sham group,bP=0.1297 us WT mice.Bar=50 m.3.脊髓损伤不同时间点ROS和4-HNE表达情况脊髓损伤后释放大量炎性物质,损伤区局部ROS含量显著增加。我们通过对WT、A R K O 小鼠脊髓损伤后1、3、7、14和2 4dROS检测显示,WT、A RKO小鼠脊髓ROS含量迅速升高,在损伤后3d即到达高峰,随后其含量逐渐下降,两组之间ROS表达模式没有明显差异(Fig.3A)。利用WesternBlot技术检测WT、A R K O 小鼠脊髓损伤后不同时间点4-

29、HNE的表达情况,来反映脊髓组织脂质过氧化水平,结果显示WT、A R K O 小鼠脊髓4-HNE含量逐渐升高,在损伤后7 d达到高峰(Fig.3B)。表明脊髓损伤可促进损伤区ROS和4-HNE含量的累积,WT、A RKO小鼠之间表达模式没有显著差异。4.4-HNE可抑制NF-kB信号通路的活化通过CD16/32(M 1型标志物)和Arg-1(M 2 型标志物)免疫荧光染色观察给予LPS刺激的同时,外源性添加4-HNE,BV2细胞极化状态。结果显示:LPS刺激组,CD16/32表达显著升高;而LPS+4-HNE刺激组,Arg-1表达显著升高(Fig.4A)。We s t e r n Bl o t

30、结果显示LPS+4-HNE刺激组iNOS、P-p 6 5表达水平较LPS刺激组均显著下降(P0.01,Fig.4B,C)。表明4-HNE联合炎性刺激可促进小胶质细胞M1型向M2型极化,并抑制NF-kB信号通路的活化。307艳:醛糖还原酶基因敲除对小鼠脊髓损伤的保护作用及机制研究姚WTARKOWTControlSham.1d3d7d14d28dControlSham1d3d7d14d28d3000rARKO20004-HNE1000Sham1371428ADays post-sciB B-actinFig.3 Expression levels of ROS and 4-HNE at diffe

31、rent time points post-SCI.A-B:ROS and 4-HNE levels at 1,3,7,14,and 28days in the spinal cord lesions of WT and AR KO mice.n=5.CD16/32Arg-1DAPIMergeSdTA205ControlLPSLPS+4-HNEa415aiNOS130kDa3102P-p6565kDa5-actin42kDa0BCDLPSPSControlControlLPS+4-HNEFig.4 4-HNE inhibits activation of the NF-kB signaling

32、 pathway.A:IF staining for CD16/32(green)and Arg-1(red)in the LPSand the LPS+4-HNE groups in the BV2 cells.B:Representative Western Blot bands of BV2 cells and semi-quantitative analy-sis.C:Semi-quantitative analysis of iNOS expression.*P0.001 us Control group,bP0.01 us LPS group.D:Semi-quanti-tativ

33、e analysis of p-p65 expression.P0.0001 us Control group,bP0.0001 us LPS group.Bar=20 m.讨论炎症反应是脊髓损伤后继发性损伤中最重要的病理过程,损伤区周围组织的驻留小胶质细胞和血-脑屏障破坏后外周血源性巨噬细胞是主要的炎性细胞亚群1。基于小胶质细胞/巨噬细胞的极化状态,兼具神经保护和神经毒性作用2 。近些年来研究发现AR是氧化应激诱导炎症的关键酶类。本研究采用ARKO小鼠,利用小鼠脊髓钳夹伤模型,观察到ARKO可以促进小鼠SCI后的运动功能恢复,这与以往的文献报道相一致9AR是多元醇代谢通路的关键限速酶,在NA

34、DPH存在的条件下,将葡萄糖转化为山梨醇10 。在过去的几十年中,大量的研究主要集中在AR与糖尿病及其并发症的生理病理学过程。最近的研究表明,AR功能不仅局限于糖代谢的过程中,它还可以有效地代谢细胞内由ROS导致的脂质过氧化产生的醛类,如4-HNE12。在多种炎性模型中发现抑制AR 的活性可以减弱炎性反应的发生13-15。并且有报道指出AR通过NF-kB信号通路调控炎性反应16 。在本次研究中,我3082023年5月第39 卷第3期神经解剖学杂志,们观察到ARKO会抑制脊髓损伤后小胶质细胞的活化,降低NF-kB信号通路效应分子iNOS的表达,值得注意的是,P-p65的表达在WT和ARKO小鼠之

35、间没有明显差异。大量研究表明4-HNE是一种可以调节信号转导、细胞增殖和细胞凋亡的多功能脂质醛类17 。HillBG课题组研究报道在大鼠主动脉平滑肌细胞中,高浓度4-HNE可以诱导自噬的产生18 。由于4-HNE分子结构的特殊性,可以对某些蛋白质进行修饰,并且促使这些蛋白进人蛋白酶体途径发生降解19。在BV2细胞中,给予LPS的同时,外源性添加10 mol/L4-HNE,会促进BV2由M1型向M2型的极化,并抑制iNOS和p-p65的表达。有文献报道指出4-HNE可以促进自噬的发生19。那么,这一调控过程可能是4-HNE含量的增高,会对NF-kB信号通路关键分子进行修饰,从而进入自噬-溶酶体途

36、径发生降解,最终抑制NF-kB信号通路的活化。综上所述,ARKO小鼠在脊髓损伤后会出现4-HNE的累积,降低NF-kB信号通路的活化程度,使小胶质细胞由M1型向M2型极化,促进小鼠运动功能的恢复。目前 AR抑制剂在用于治疗糖尿病性白内障疾病已有进入临床应用的药物,这对脊髓损伤治疗相关应用奠定了基础。参考文献1 Zipser CM,Cragg JJ,Guest JD,et al.Cell-based and stem-cell-based treatments for spinal cord injury:Evidence from clinical trialsJ.Lancet Neurol,

37、2022,21(7):659-670.D0I:10.1016/S1474-4422(21)00464-6.2 Van Broeckhoven J,Sommer D,Dooley D,et al.Macrophage phagocy-tosis after spinal cord injury:When friends become foes J.Brain,2021,144(10):2933-2945.D0I:10.1093/brain/awab250.3 Milich LM,Ryan CB,Lee JK.The origin,fate,and contribution ofmacrophag

38、es to spinal cord injury pathology J.Acta Neuropathol,2019,137(5):785-797.D0I:10.1007/s00401-019-01992-3.4 Syamprasad NP,Jain S,Rajdev B,et al.Aldose reductase and cancermetabolism:The master regulator in the limelight J.BiochemPharmacol,2023,211:115528.D01:10.1016/j.bcp.2023.115528.5 Pastel E,Point

39、ud JC,Martinez A,et al.Aldo-keto reductases 1b inadrenal cortex physiology J.Front Endocrinol(La u s a n n e),2016,7,97.D0I:10.3389/fendo.2016.00097.6 Rao M,Huang YK,Liu CC,et al.Aldose reductase inhibition de-celerates optic nerve degeneration by alleviating retinal microglia ac-tivationJ.Sci Rep,2

40、023,13(1):5592.D0I:10.1038/s41598023-327025.7 Wu X,Li X,Fu Q,et al.AKRIBl promotes basal-like breast canc-er progression by a positive feedback loop that activates the EMTprogramJ.J Exp Med,2017,214(4):1065-1079.D0I:10.1084/jem.20160903.8 Zhu R,Zhu X,Zhu Y,et al.Immunomodulatory layered double hy-dr

41、oxide nanoparticles enable neurogenesis by targeting transforminggrowth factor-beta receptor 2J.ACS Nano,2021,15(2):2812-2830.D0I:10.1021/acsnano.0c08727.9 Zhang Q,Bian G,Chen P,et al.Aldose reductase regulates micro-glia/macrophages polarization through the cAMP response element-binding protein aft

42、er spinal cord injury in miceJ.Mol Neurobiol,2016,53(1):662-676.D0I:10.1007/s12035-014-9035-8.10 Tang WH,Martin KA,Hwa J.Aldose reductase,oxidative stress,and diabetic mellitusJ.Front Pharmacol,2012,3:87.DOI:10.3389/fphar.2012.00087.11 Hashim Z,Zarina S.Osmotic stress induced oxidative damage:Possib

43、le mechanism of cataract formation in diabetes J.J DiabetesComplications,2012,26(4):275-279.DOI:10.1016/j.jdia-comp.2012.04.005.12 Srivastava SK,Yadav UC,Reddy AB,et al.Aldose reductase inhi-bition suppresses oxidative stress-induced inflammatory disordersJ.Chem Biol Interact,2011,191(1-3):330-338.D

44、0I:10.1016/j.cbi.2011.02.023.13 Yadav UC,Ramana KV,Srivastava SK.Aldose reductase inhibi-tion suppresses airway inflammationJ.Chem Biol Interact,2011,191(1-3):339-345.D0I:10.1016/j.cbi.2011.02.014.14 Shoeb M,Yadav UC,Srivastava SK,et al.Inhibition of aldose re-ductase prevents endotoxin-induced infl

45、ammation by regulating thearachidonic acid pathway in murine macrophages J.Free RadicBiol Med,2011,51(9):1686-1696.D01I:10.1016/j.freerad-biomed.2011.07.024.15 Yadav UC,Ramana KV,Aguilera-Aguirre L,et al.Inhibition ofaldose reductase prevents experimental allergic airway inflammationin miceJ.PLoS On

46、e,2009,4(8):e6535.D0I:10.1371/jour-nal.pone.0006535.16 Ramana KV,Srivastava SK.Mediation of aldose reductase in li-popolysaccharide-induced inflammatory signals in mouse peritonealmacrophagesJ.Cytokine,2006,36(3-4):115-122.D0I:10.1016/j.cyto.2006.11.003.17 Milkovic L,Zarkovic N,Marusic Z,et al.The 4

47、-hydroxynonenal-protein adducts and their biological relevance:Are some proteinspreferred targets?J.Antioxidants(Basel),2023,12(4).DOI:10.3390/antiox12040856.18 Hill BG,Haberzettl P,Ahmed Y,et al.Unsaturated lipid peroxi-dation-derived aldehydes activate autophagy in vascular smooth-mus-cle cellsJ.B

48、iochem J,2008,410(3):525-534.D0I:10.1042/BJ20071063.19 Zhang T,Wu J,Yao X,et al.The aldose reductase inhibitor epal-restat maintains blood-brain barrier integrity by enhancing endotheli-al cell function during cerebral ischemia J.Mol Neurobiol,2023,60(7):3741-3757.D0I:10.1007/s12035-023-03304-z.(收稿日期:2 0 2 3-0 5-0 1)

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服