收藏 分销(赏)

对数函数例题.doc

上传人:xrp****65 文档编号:7036284 上传时间:2024-12-25 格式:DOC 页数:3 大小:340.50KB
下载 相关 举报
对数函数例题.doc_第1页
第1页 / 共3页
对数函数例题.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
对数函数典型例题 例1.求下列函数的定义域: (1); (2); (3). 分析:此题主要利用对数函数的定义域求解。 解:(1)由>0得,∴函数的定义域是; (2)由得,∴函数的定义域是; (3)由9-得-3,∴函数的定义域是. 说明:此题只是对数函数性质的简单应用,应强调学生注意书写格式。 例2.求函数和函数的反函数。 解:(1) ∴ ; (2) ∴ . 例4.比较下列各组数中两个值的大小: (1),; (2),; (3),. 解:(1)对数函数在上是增函数, 于是; (2)对数函数在上是减函数, 于是; (3)当时,对数函数在上是增函数, 于是, 当时,对数函数在上是减函数, 于是. 例5.比较下列比较下列各组数中两个值的大小: (1),; (2),; (3),,; (4),,. 解:(1)∵, ,∴; (2)∵, ,∴. (3)∵, , , ∴. (4)∵, ∴. 例6.已知,比较,的大小。 解:∵, ∴,当,时,得, ∴, ∴.当,时,得, ∴, ∴.当,时,得,, ∴,, ∴. 综上所述,,的大小关系为或或. 例7.求下列函数的值域: (1);(2);(3)(且). 解:(1)令,则, ∵, ∴,即函数值域为. (2)令,则, ∴, 即函数值域为. (3)令, 当时,, 即值域为, 当时,, 即值域为. 例8.判断函数的奇偶性。 解:∵恒成立,故的定义域为, ,所以,为奇函数。 例9.求函数的单调区间。 解:令在上递增,在上递减, 又∵, ∴或, 故在上递增,在上递减, 又∵为减函数, 所以,函数在上递增,在上递减。 说明:利用对数函数性质判断函数单调性时,首先要考察函数的定义域,再利用复合函数单调性的判断方法来求单调区间。 例10.若函数在区间上是增函数,的取值范围。 解:令, ∵函数为减函数, ∴在区间上递减,且满足,∴,解得, 所以,的取值范围为.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服