1、对数函数典型例题例1求下列函数的定义域:(1); (2); (3)分析:此题主要利用对数函数的定义域求解。解:(1)由0得,函数的定义域是;(2)由得,函数的定义域是;(3)由9-得-3,函数的定义域是说明:此题只是对数函数性质的简单应用,应强调学生注意书写格式。例2求函数和函数的反函数。解:(1) ; (2) 例4比较下列各组数中两个值的大小: (1),; (2),; (3),.解:(1)对数函数在上是增函数,于是;(2)对数函数在上是减函数,于是;(3)当时,对数函数在上是增函数,于是, 当时,对数函数在上是减函数,于是例5比较下列比较下列各组数中两个值的大小:(1),; (2),; (3
2、),; (4),解:(1), ,; (2), , (3), , , (4), 例6已知,比较,的大小。解:, ,当,时,得, 当,时,得, 当,时,得, 综上所述,的大小关系为或或例7求下列函数的值域:(1);(2);(3)(且)解:(1)令,则, , ,即函数值域为 (2)令,则, , 即函数值域为 (3)令, 当时, 即值域为, 当时, 即值域为例8判断函数的奇偶性。解:恒成立,故的定义域为, ,所以,为奇函数。例9求函数的单调区间。解:令在上递增,在上递减,又, 或,故在上递增,在上递减, 又为减函数,所以,函数在上递增,在上递减。说明:利用对数函数性质判断函数单调性时,首先要考察函数的定义域,再利用复合函数单调性的判断方法来求单调区间。例10若函数在区间上是增函数,的取值范围。解:令, 函数为减函数,在区间上递减,且满足,解得,所以,的取值范围为