收藏 分销(赏)

行测数量关系——容斥原理问题.doc

上传人:xrp****65 文档编号:7010413 上传时间:2024-12-24 格式:DOC 页数:3 大小:28.50KB
下载 相关 举报
行测数量关系——容斥原理问题.doc_第1页
第1页 / 共3页
行测数量关系——容斥原理问题.doc_第2页
第2页 / 共3页
行测数量关系——容斥原理问题.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、容斥原理问题容斥原理问题 两个集合容斥问题 容斥原理一:如果被计数的事物有A、B两类,那么,A类元素个数+B类元素个数=既是A类又是B类的元素个数+A类或B类元素个数。写成公式形式即:A+B=AB+AB韦恩图:解决简单的两类或三类被计数事物之间的重叠问题时采用韦恩图会更加便捷、直接。 太多的人总是抱怨学不进去,记不住,思维转得慢,大脑不好使,吸取知识的能力太差,学习效率太低。读书的学习不好,经商的赚钱不多!作者本人以前也和读者有着同样的困惑,在我考上公务员,然后后来又转行经商,然后再读MBA,后来再考托福,一路的高压力考试中,从开始就学习了很多的学习方法,记忆方法,包括各种潜能开发培训班都上过

2、一些,还有吃补脑的药也有一些,不过感觉上懂了理论,没有太多的实践,效果不太明显,吃的就更不想说了,相信太多的人都吃过,没有作用。06年的时候,无意间在百度搜索到一个叫做“精英特快速阅读记忆训练软件”的产品,当时要考公务员,花了几百块钱买了来练,开始一两个星期没有太明显的效果,但是一个月的训练之后,效果非常理想,阅读速度和记忆能力在短时间内提高很多,思维这些都比以前更敏捷,那个时候一两个小时可以看完一本书,而且非常容易记住书中的内容。这个能力在后来的公务员考试、MBA、托福以及生活中都很大程度上成就了我,这也是我今天要推荐给诸位的最有分享价值的好东西(想学的朋友可以到这里下载,我做了超链接,按住

3、键盘左下角Ctrl键,然后鼠标左键点击本行文字即可连接。)基本上30个小时就够用了。非常极力的推荐给正在高压学习的朋友们,希望你们也能够快速高效的学习,成就自己的人生。最后,经常学习的同学,我再推荐一个学习商城“爱贝街”,上面的产品非常全,有一个分类是潜能开发,里面卖的产品比市场上便宜很多哦(按住键盘左下角Ctrl键,然后鼠标左键点击本行文字即可连接。 )【例】四年级一班有54人,定阅小学生优秀作文和数学大世界两种读物的有13人,订阅小学生优秀作文的有45人每人至少订阅一种读物,订阅数学大世界的有多少人?()A13 B22 C33 D41【答案】B【解题关键点】设A=定阅小学生优秀作文的人,B

4、=订阅数学大世界的人,那么AB=同时订阅两本读物的人,AB=至少订阅一样的人,由容斥原则,B= AB+AB-A=54+13-45=22人。【例】五年级有122名同学参加语文、数学考试,每个至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。语文、数学都优秀的有多少人? ()A30 B35 C57 D65【答案】A【解题关键点】此题是典型的两个集合的容斥问题,因此,可以直接有两个集合的容斥原理得到,语文和数学都优秀的学生有65+87-122=30人。【例】学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。这个文艺组

5、共有多少人?()A25 B32 C33 D41【答案】C【解题关键点】设A=会拉手提琴的,B=会弹电子琴的,因此AB =文艺组的人,AB=两样都会的,由两个集合的容斥原理可得:AB=A+B- AB=24+17-8=33。【例】某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人,问多少个同学两道题都没有答对?()A1 B2 C3 D4【答案】C【解题关键点】有两个集合的容斥原理得到,至少答对一道题的同学有25+23-15=33人,因此两道题都没有答对的同学有36-33=3人。 三个集合容斥问题容斥原理二:如果被计数的事物有A、B、C三类,那么,A类元

6、素个数+B类元素个数+C类元素个数=A类或B类或C类元素个数+既是A类义是B类的元素个数+既是A类又是B类的元素个数+既是B类又是C类元素个数既是A类又是B类而且是C类的元素个数。写成公式形式即: A+B+C=ABC+AB+CA-ABC要点提示:由上题可以看出,单纯使用容斥原理来解题,会比较麻烦。推荐使用韦恩图,结合容斥原理解题。1、容斥原理公式法,适用于“条件与问题”都可直接代人公式的题目。两个集合:A U BA+B一AB三个集合:A U B U CA+B+CABBCCA+ABC2、文氏图示意法,条件或者所求不完全能用上述两个公式表示时,利用文氏图来解决。【例】某大学有外语教师120名,其中

7、教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既日语又教法语,有4名教英语、日语和法语三门课,则不交三门课的外语教师有多少名?()A12 B14 C16 D18【答案】B【解题关键点】此题是三个集合的容斥问题,根据容斥原理可以得到,至少教英、日、法三门课其中一门的外语教师有50+45+40-10-8-4=106,不做这三门课的外语教师人数为120-106=14名。【例】对厦门大学计算机系100名学生进行调查,结果发现他们喜欢看NBA和足球、赛车。其中58人喜欢看NBA;38人喜欢看赛车,52人喜欢看足球,既喜欢看NBA又喜欢看赛

8、车的有18人,既喜欢看足球又喜欢看赛车的有16人,三种都喜欢看的有12人,则只喜欢看足球的有()。A22人 B 28人 C30人 D36人【答案】A【解题关键点】求只喜欢看足球的,只要种人数减去喜欢看NBA和喜欢看赛车的,但多减去了既喜欢看NBA又喜欢看赛车的,再加回去即可,100-58-38+18=22人。【例】实验小学举办学术书法展,学校的橱窗里展出了每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展作品共有20幅。一、二年级参展的作品总数比三、四年级参展的作品总数少4幅。一、二年级参展的书法作品共有多少幅?()A6 B10 C16 D20【答案】A【解题关键点】28幅不是五年级的,也就是六年级+其他年级=28幅;24幅不是六年级的,也就是五年级+其他年级=24幅;上述两个式子相加得,(五年级+六年级)+2其他年级=28+24,因此其他年级的有(28+24-20)2=16幅,又因为一、二年级参展的作品总数比三、四年级参展的作品总数少4幅,因此一、二年级参展的书法作品共有(16-2)2=6幅。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服