资源描述
高中数学方法和结论
第一章 平面向量
平面向量的基本运算——知识点归纳
1向量的概念:
①向量:既有大小又有方向的量向量一般用……来表示,或用有向线段的起点与终点的大写字母表示,如:几何表示法 ,;坐标表示法 向量的大小即向量的模(长度),记作||即向量的大小,记作||
向量不能比较大小,但向量的模可以比较大小.
②零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行零向量=||=0 由于的方向是任意的,且规定平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别)
③单位向量:模为1个单位长度的向量
向量为单位向量||=1
④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直线上方向相同或相反的向量,称为平行向量记作∥由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量
数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的.
⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为大小相等,方向相同
2向量加法
求两个向量和的运算叫做向量的加法
设,则+==
(1);(2)向量加法满足交换律与结合律;
向量加法有“三角形法则”与“平行四边形法则”:
(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量
(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点
当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则.向量加法的三角形法则可推广至多个向量相加:
,但这时必须“首尾相连”.
3向量的减法
① 相反向量:与长度相等、方向相反的向量,叫做的相反向量
记作,零向量的相反向量仍是零向量
关于相反向量有: (i)=; (ii) +()=()+=;
(iii)若、是互为相反向量,则=,=,+=
②向量减法:向量加上的相反向量叫做与的差,
记作:求两个向量差的运算,叫做向量的减法
③作图法:可以表示为从的终点指向的终点的向量(、有共同起点)
4实数与向量的积:
①实数λ与向量的积是一个向量,记作λ,它的长度与方向规定如下:
(Ⅰ);
(Ⅱ)当时,λ的方向与的方向相同;当时,λ的方向与的方向相反;当时,,方向是任意的
②数乘向量满足交换律、结合律与分配律
5两个向量共线定理:
向量与非零向量共线有且只有一个实数,使得=
6平面向量的基本定理:
如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:其中不共线的向量叫做表示这一平面内所有向量的一组基底
7 特别注意:
(1)向量的加法与减法是互逆运算
(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件
(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况
(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关
平面向量的坐标运算——知识点归纳
1平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标
(1)相等的向量坐标相同,坐标相同的向量是相等的向量
(2)向量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关
2平面向量的坐标运算:
(1) 若,则
(2) 若,则
(3) 若=(x,y),则=(x, y)
(4) 若,则
(5) 若,则
若,则
3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质
运算类型
几何方法
坐标方法
运算性质
向
量
的
加
法
1平行四边形法则
2三角形法则
向
量
的
减
法
三角形法则
向
量
的
乘
法
是一个向量,
满足:
>0时,与同向;
<0时,与异向;
=0时, =
∥
向
量
的
数
量
积
是一个数
或时,
=0
且时,
,
平面向量的数量积——知识点归纳
1两个向量的数量积:
已知两个非零向量与,它们的夹角为,则·=︱︱·︱︱cos
叫做与的数量积(或内积) 规定
2向量的投影:︱︱cos=∈R,称为向量在方向上的投影投影的绝对值称为射影
3数量积的几何意义: ·等于的长度与在方向上的投影的乘积
4向量的模与平方的关系:
5乘法公式成立:
;
6平面向量数量积的运算律:
①交换律成立:
②对实数的结合律成立:
③分配律成立:
特别注意:(1)结合律不成立:;
(2)消去律不成立不能得到
(3)=0不能得到=或=
7两个向量的数量积的坐标运算:
已知两个向量,则·=
8向量的夹角:已知两个非零向量与,作=, =,则∠AOB= ()叫做向量与的夹角
cos==
当且仅当两个非零向量与同方向时,θ=00,当且仅当与反方向时θ=1800,同时与其它任何非零向量之间不谈夹角这一问题
9垂直:如果与的夹角为900则称与垂直,记作⊥
10两个非零向量垂直的充要条件:
⊥·=O平面向量数量积的性质
线段的定比分点与平移——知识点归纳
1线段的定比分点定义:设P1,P2是直线L上的两点,点P是L上不同于P1,P2的任意一点,则存在一个实数,使,叫做点P分有向线段所成的比当点P在线段上时,;当点P在线段或的延长线上时,<0
2定比分点的向量表达式:点P分有向线段所成的比是,
则(O为平面内任意点)
3定比分点的坐标形式: ,其中P1(x1,y1), P2(x2,y2), P (x,y)
4中点坐标公式: 当=1时,分点P为线段的中点,即有
5的重心坐标公式:
6图形平移的定义:设F是坐标平面内的一个图形,将图上的所有点按照同一方向移动同样长度,得到图形F’,我们把这一过程叫做图形的平移
7平移公式: 设点按向量平移后得到点,则=+或,曲线按向量平移后所得的曲线的函数解析式为:
这个公式叫做点的平移公式,它反映了图形中的每一点在平移后的新坐标与原坐标间的关系
1.实数与向量的积的运算律:设λ、μ为实数,那么
(1) 结合律:λ(μa)=(λμ)a;
(2)第一分配律:(λ+μ)a=λa+μa;(3)第二分配律:λ(a+b)=λa+λb.
2.向量的数量积的运算律:(三个向量的数量积不满足结合律)
(1) a·b= b·a (交换律);
(2)(a)·b= (a·b)=a·b= a·(b);(3)(a+b)·c= a ·c +b·c.
3.平面向量基本定理
(1)如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e1+λ2e2.
(2)不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底.
4.向量平行的坐标表示
设a=,b=,则a∥b.
53. a与b的数量积(或内积)
a·b=|a||b|cosθ.
5. a·b的几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积.
6.平面向量的坐标运算
(1)设a=,b=,则a+b=.
(2)设a=,b=,则a-b=.
(3)设A,B,则.
(4)设a=,则a=.
(5)设a=,b=,则a·b=.
7.两向量的夹角公式
(a=,b=).
8.平面两点间的距离公式
= (A,B).
9.向量的平行与垂直
设a=,b=,则
a∥bb=λa ;aba·b=0.
10.线段的定比分公式
设,,是线段的分点,是实数,且,则
().
11.三角形的重心坐标公式
△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.
12.点的平移公式
.
注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.
13.“按向量平移”的几个结论
(1)点按向量a=平移后得到点.
(2) 函数的图象按向量a=平移后得到图象,则的函数解析式为.
(3) 图象按向量a=平移后得到图象,若的解析式,则的函数解析式为.
(4)曲线:按向量a=平移后得到图象,则的方程为.
(5) 向量m=按向量a=平移后得到的向量仍然为m=.
14. 三角形四“心”向量形式的充要条件,设为所在平面上一点,则
(1)为的外心.
(2)为的重心.
(3)为的垂心.
(4)为的内心.(为角所对边长)
第二章 不等式
不等式的概念与性质——知识点归纳
1.实数的大小顺序与运算性质之间的关系:
2.不等式的性质:
(1) , (反对称性)
(2) , (传递性)
(3),故 (移项法则)
推论: (同向不等式相加)
(4),
推论1:
推论2:
推论3:
算术平均数与几何平均数——知识点归纳
1.常用的基本不等式和重要的不等式
(1) 当且仅当
(2)
(3),则
(4)
2最值定理:设
(1)如积
(2)如积
即:积定和最小,和定积最大
运用最值定理求最值的三要素:一正二定三相等
3 均值不等式:
两个正数的均值不等式:
三个正数的均值不等是:
n个正数的均值不等式:
4四种均值的关系:两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系是
不等式的证明——知识点归纳
不等式的证明方法
(1)比较法:作差比较:
作差比较的步骤:
①作差:对要比较大小的两个数(或式)作差
②变形:对差进行因式分解或配方成几个数(或式)的完全平方和
③判断差的符号:结合变形的结果及题设条件判断差的符号
注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小
(2)综合法:由因导果
(3)分析法:执果索因基本步骤:要证……只需证……,只需证……
①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件
②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达
(4)反证法:正难则反
(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的
放缩法的方法有:
①添加或舍去一些项,如:;;
②将分子或分母放大(或缩小)
③利用基本不等式,
如:;
④利用常用结论:
Ⅰ、;
Ⅱ、 ; (程度大)
Ⅲ、 ; (程度小)
(6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元如:
已知,可设;
已知,可设();
已知,可设;
已知,可设;
(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;
证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.
(8)数学归纳法法
解不等式——知识点归纳
(1)解一元一次不等式
① ②
(2)解一元二次不等式.一元二次不等式,设相应的一元二次方程的两根为,,则不等式的解的各种情况如下表:
二次函数
()的图象
一元二次方程
有两相异实根
有两相等实根
无实根
R
方程的根→函数草图→观察得解,对于的情况可以化为的情况解决
注意:含参数的不等式ax+bx+c>0恒成立问题含参不等式ax+bx+c>0的解集是R;其解答分a=0(验证bx+c>0是否恒成立)、a≠0(a<0且△<0)两种情况
(3)解一元高次不等式;
(4)解分式不等式;
(5)解无理不等式;
(1) ;
(2);
(3).
(6)解指数不等式;指数不等式与对数不等式
(1)当时,;
;
(2)当时,;
(7)绝对值不等式解法
不等式的解集是;
不等式的解集是
不等式的解集为 ;
不等式的解集为
当a>0时,有;
或
|f(x)|<g(x)与-g(x)<f(x)<g(x)同解.(g(x)>0)
|f(x)|>g(x) 与①f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0);②g(x)<0同解
4 零点分段法:高次不等式与分式不等式的简洁解法
步骤:①形式:
②首项系数符号>0——标准式,若系数含参数时,须判断或讨论系数的符号,化负为正
③判断或比较根的大小
绝对值不等式——知识点归纳
1.解绝对值不等式的基本思想:解绝对值不等式的基本思想是去绝对值,常采用的方法是讨论符号和平方
2.注意利用三角不等式证明含有绝对值的问题
||a|─|b||£|a+b|£|a|+|b|;||a|─|b||£|a─b|£|a|+|b|;并指出等号条件
3.(1)|f(x)|<g(x)Û─g(x)<f(x)<g(x);
(2)|f(x)|>g(x)Ûf(x)>g(x)或f(x)<─g(x)(无论g(x)是否为正)
(3)含绝对值的不等式性质(双向不等式)
左边在时取得等号,右边在时取得等号
1.常用不等式 ;
(1)(当且仅当a=b时取“=”号).
(2)(当且仅当a=b时取“=”号).
(3)
(4)柯西不等式
(5).
2.已知都是正数,则有
(1)若积是定值,则当时和有最小值;
(2)若和是定值,则当时积有最大值.
第三章 直线和圆的方程
直线方程——知识点归纳
1数轴上两点间距离公式:
2直角坐标平面内的两点间距离公式:
3直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角
当直线和x轴平行或重合时,我们规定直线的倾斜角为0°
可见,直线倾斜角的取值范围是0°≤α<180°
4直线的斜率:倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k=tanα(α≠90°)
倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞)
5直线的方向向量:设F1(x1,y1)、F2(x2,y2)是直线上不同的两点,则向量=(x2-x1,y2-y1)称为直线的方向向量
向量=(1,)=(1,k)也是该直线的方向向量,k是直线的斜率特别地,垂直于轴的直线的一个方向向量为=(0,1)
6求直线斜率的方法
①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα
②公式法:已知直线过两点P1(x1,y1)、P2(x2,y2),且x1≠x2,则斜率k=
③方向向量法:若=(m,n)为直线的方向向量,则直线的斜率k=
平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率
对于直线上任意两点P1(x1,y1)、P2(x2,y2),当x1=x2时,直线斜率k不存在,倾斜角α=90°;当x1≠x2时,直线斜率存在,是一实数,并且k≥0时,α=arctank;k<0时,α=π+arctank
7直线方程的五种形式
点斜式:, 斜截式:
两点式:, 截距式:
一般式:
两直线的位置关系——知识点归纳
1.特殊情况下的两直线平行与垂直.
当两条直线中有一条直线没有斜率时:
(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;
(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直
2.斜率存在时两直线的平行与垂直:
两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即=且
已知直线、的方程为:,
:
∥的充要条件是
⑵两条直线垂直的情形:如果两条直线的斜率分别是和,则这两条直线垂直的充要条件是.
已知直线和的一般式方程为:,
:,则.
3直线到的角的定义及公式:
直线按逆时针方向旋转到与重合时所转的角,叫做到的角 到的角:0°<<180°, 如果如果,
4.直线与的夹角定义及公式:
到的角是, 到的角是π-,当与相交但不垂直时, 和π-仅有一个角是锐角,我们把其中的锐角叫两条直线的夹角当直线⊥时,直线与的夹角是夹角:0°<≤90°
如果如果,
5.两条直线是否相交的判断
两条直线是否有交点,就要看这两条直线方程所组成的方程组:
是否有惟一解
6.点到直线距离公式:
点到直线的距离为:
7.两平行线间的距离公式
已知两条平行线直线和的一般式方程为:,
:,则与的距离为
8 直线系方程:若两条直线:,:有交点,则过与交点的直线系方程为+或+ (λ为常数)
简单的线性规划及实际应用——知识点归纳
1二元一次不等式表示平面区域:
在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点P(x0,y0)
B>0时,①Ax0+By0+C>0,则点P(x0,y0)在直线的上方;②Ax0+By0+C<0,则点P(x0,y0)在直线的下方
对于任意的二元一次不等式Ax+By+C>0(或<0),无论B为正值还是负值,我们都可以把y项的系数变形为正数
当B>0时,①Ax+By+C>0表示直线Ax+By+C=0上方的区域;②Ax+By+C<0表示直线Ax+By+C=0下方的区域
2线性规划:
求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题
满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题
线性规划问题一般用图解法,其步骤如下:
(1)根据题意,设出变量x、y;
(2)找出线性约束条件;
(3)确定线性目标函数z=f(x,y);
(4)画出可行域(即各约束条件所示区域的公共区域);
(5)利用线性目标函数作平行直线系f(x,y)=t(t为参数);
(6)观察图形,找到直线f(x,y)=t在可行域上使t取得欲求最值的位置,以确定最优解,给出答案
1.斜率公式:(、).
2.直线的五种方程
(1)点斜式 (直线过点,且斜率为).
(2)斜截式 (b为直线在y轴上的截距).
(3)两点式 ()(、 ()).
(4) 截距式 (分别为直线的横、纵截距,)
(5)一般式 (其中A、B不同时为0).
3.两条直线的平行和垂直
(1)若,
①;②.
(2)若,,且A2、B2 、C2都不为零,
①;②;
4.夹角公式:.(,,)
直线时,直线l1与l2的夹角是.
5. 到的角公式:.(,,)
直线时,直线l1到l2的角是.
6.四种常用直线系方程
(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数;经过定点的直线系方程为,其中是待定的系数.
(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.
(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.
(4)垂直直线系方程:与直线 (A≠0,B≠0)垂直的直线系方程是,λ是参变量.
7.点到直线的距离:(点,直线:).
8. 或所表示的平面区域
设直线,则或所表示的平面区域是:
若,当与同号时,表示直线的上方的区域;
当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.
若,当与同号时,表示直线的右方的区域;
当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.
曲线和方程——知识点归纳
1.平面解析几何研究的主要问题:根据已知条件求出表示平面曲线的方程;通过方程,研究平面曲线的性质
2.“曲线的方程”、“方程的曲线”的定义:
在直角坐标系中,如果某曲线C上的点与一个二元方程的实数解建立了如下关系:
(1)曲线上的点的坐标都是这个方程的解;(纯粹性)
(2)以这个方程的解为坐标的点都是曲线上的点.(完备性)
那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线
3.定义的理解:
设P={具有某种性质(或适合某种条件)的点},Q={(x,y)|f(x,y)=0},若设点M的坐标为(x0,y0),则用集合的观点,上述定义中的两条可以表述为:
以上两条还可以转化为它们的等价命题(逆否命题):
为曲线C的方程;曲线C为方程f(x,y)=0的曲线(图形).
在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件.两者满足了,“曲线的方程”和“方程的曲线”才具备充分性.只有符合关系(1)、(2),才能将曲线的研究转化为方程来研究,即几何问题的研究转化为代数问题.这种“以数论形”的思想是解析几何的基本思想和基本方法
4求简单的曲线方程的一般步骤:
(1)建立适当的坐标系,用有序实数对表示曲线上任意一点M的坐标;
(2)写出适合条件P的点M的集合;
(3)用坐标表示条件P(M),列出方程;
(4)化方程为最简形式;
(5)证明以化简后的方程的解为坐标的点都是曲线上的点
上述方法简称“五步法”,在步骤④中若化简过程是同解变形过程;或最简方程的解集与原始方程的解集相同,则步骤⑤可省略不写,因为此时所求得的最简方程就是所求曲线的方程.
5由方程画曲线(图形)的步骤:
①讨论曲线的对称性(关于x轴、y轴和原点);
②求截距:
③讨论曲线的范围;
④列表、描点、画线.
6.交点:求两曲线的交点,就是解这两条曲线方程组成的方程组.
7.曲线系方程:过两曲线f1(x,y)=0和f2(x,y)=0的交点的曲线系方程是f1(x,y)+λf2(x,y)=0(λ∈R).
求轨迹有直接法、定义法和参数法,最常使用的就是参数法
一个点的运动是受某些因素影响的所以求轨迹问题时,我们经常要分析作图过程,顺藤摸瓜,从中找出影响动点的因素最后确定一个或几个因素作为基本量,找出它们和动点坐标的关系,列出方程这就是参数法
圆的方程——知识点归纳
1.圆的定义
平面内与定点距离等于定长的点的集合(轨迹)叫圆.
2圆的标准方程
圆心为(a,b),半径为r的圆的标准方程为
方程中有三个参量a、b、r,因此三个独立条件可以确定一个圆
3圆的一般方程
二次方程x2+y2+Dx+Ey+F=0(*)配方得
(x+)2+(y+)2=
把方程
其中,半径是,圆心坐标是叫做圆的一般方程
(1)圆的一般方程体现了圆方程的代数特点:x2、y2项系数相等且不为零 没有xy项
(2)当D2+E2-4F=0时,方程(*)表示点(-,-);
当D2+E2-4F<0时,方程(*)不表示任何图形
(3)根据条件列出关于D、E、F的三元一次方程组,可确定圆的一般方程
4圆的参数方程
①圆心在O(0,0),半径为r的圆的参数方程是:
②圆心在点,半径为的圆的参数方程是:
在①中消去θ得x2+y2=r2,在②中消去θ得(x-a)2+(y-b)2=r2,把这两个方程相对于它们各自的参数方程又叫做普通方程
5二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件
若二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆,则有A=C≠0,B=0,这仅是二元二次方程表示圆的必要条件,不充分
在A=C≠0,B=0时,二元二次方程化为x2+y2+x+y+=0,
仅当D2+E2-4AF>0时表示圆
故Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是:
①A=C≠0,②B=0,③D2+E2-4AF>0
6 线段AB为直径的圆的方程: 若,则以线段AB为直径的圆的方程是
7经过两个圆交点的圆系方程:经过,的交点的圆系方程是:
在过两圆公共点的图象方程中,若λ=-1,可得两圆公共弦所在的直线方程
8 经过直线与圆交点的圆系方程: 经过直线与圆的交点的圆系方程是:
9确定圆需三个独立的条件
(1)标准方程: ,
(2)一般方程:,(
对称问题——知识点归纳
1点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题
设P(x0,y0),对称中心为A(a,b),则P关于A的对称点为P′(2a-x0,2b-y0)
2点关于直线成轴对称问题
由轴对称定义知,对称轴即为两对称点连线的“垂直平分线”利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标一般情形如下:
设点P(x0,y0)关于直线y=kx+b的对称点为P′(x′,y′),则有
,可求出x′、y′
特殊地,点P(x0,y0)关于直线x=a的对称点为P′(2a-x0,y0);点P(x0,y0)关于直线y=b的对称点为P′(x0,2b-y0)
3曲线关于点、曲线关于直线的中心或轴对称问题:一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化)一般结论如下:
(1)曲线f(x,y)=0关于已知点A(a,b)的对称曲线的方程是f(2a-x,2b-y)=0
(2)曲线f(x,y)=0关于直线y=kx+b的对称曲线的求法:
设曲线f(x,y)=0上任意一点为P(x0,y0),P点关于直线y=kx+b的对称点为P′(y,x),则由(2)知,P与P′的坐标满足
从中解出x0、y0,
代入已知曲线f(x,y)=0,应有f(x0,y0)=0利用坐标代换法就可求出曲线f(x,y)=0关于直线y=kx+b的对称曲线方程
4两点关于点对称、两点关于直线对称的常见结论:
(1)点(x,y)关于x轴的对称点为(x,-y);
(2)点(x,y)关于y轴的对称点为(-x,y);
(3)点(x,y)关于原点的对称点为(-x,-y);
(4)点(x,y)关于直线x-y=0的对称点为(y,x);
(5)点(x,y)关于直线x+y=0的对称点为(-y,-x)
直线与圆、圆与圆的位置关系——知识点归纳
1研究圆与直线的位置关系最常用的方法:①判别式法;②考查圆心到直线的距离与半径的大小关系。
直线与圆的位置关系有三种,若,则 ;
;
2两圆位置关系的判定方法
设两圆圆心分别为O1,O2,半径分别为r1,r2,
①
②
③
④
⑤
3直线和圆相切:
这类问题主要是求圆的切线方程求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况
①过圆上一点的切线方程:圆为切点的切线方程是。
当点在圆外时,表示切点弦的方程。
一般地,曲线为切点的切线方程是:。
当点在圆外时,表示切点弦的方程。
这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做。
②过圆外一点的切线方程:
4直线和圆相交:
这类问题主要是求弦长以及弦的中点问题
5经过两个圆交点的圆系方程:经过,的交点的圆系方程是:
。
在过两圆公共点的图象方程中,若λ=-1,可得两圆公共弦所在的直线方程
6 经过直线与圆交点的圆系方程: 经过直线与圆的交点的圆系方程是:
7几何法: 比较圆心到直线的距离与圆半径的大小
8代数法: 讨论圆的方程与直线方程的实数解的组数
9. 圆的四种方程
(1)圆的标准方程 .
(2)圆的一般方程 (>0).
(3)圆的参数方程 .
(4)圆的直径式方程 【圆的直径的端点是、】.
10. 圆系方程
(1)过直线:与圆:的交点的圆系方程是,λ是待定的系数.
(2)过圆:与圆:的交点的圆系方程是,λ是待定的系数.
11.点与圆的位置关系,点与圆的位置关系有三种:
若,则
(1)点在圆外;
(2)点在圆上;
(3)点在圆内.
12.直线与圆的位置关系直线与圆的位置关系有三种: 其中
(1);
(2);
(3).
.
13.两圆位置关系的判定方法,设两圆圆心分别为O1,O2,半径分别为r1,r2,
(1);
(2);
(3);
(4);
(5).
(6)d=0<==>同心圆。
14.圆的切线方程
(1)已知圆.
①若已知切点在圆上,则切线只有一条,其方程是
.
当圆外时, 表示过两个切点的切点弦方程.
②过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.
③斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线.
(2)已知圆.
①过圆上的点的切线方程为;
②斜率为的圆的切线方程为.
26
展开阅读全文