1、高中数学方法和结论第一章 平面向量平面向量的基本运算知识点归纳 1向量的概念:向量:既有大小又有方向的量向量一般用来表示,或用有向线段的起点与终点的大写字母表示,如:几何表示法 ,;坐标表示法 向量的大小即向量的模(长度),记作|即向量的大小,记作 向量不能比较大小,但向量的模可以比较大小零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行零向量0 由于的方向是任意的,且规定平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件(注意与0的区别)单位向量:模为1个单位长度的向量向量为单位向量1平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都
2、可以移到同一直线上方向相同或相反的向量,称为平行向量记作由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为大小相等,方向相同2向量加法求两个向量和的运算叫做向量的加法设,则+=(1);(2)向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则”:(1)用平行四边形法则时,两个
3、已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法则向量加法的三角形法则可推广至多个向量相加:,但这时必须“首尾相连”3向量的减法 相反向量:与长度相等、方向相反的向量,叫做的相反向量记作,零向量的相反向量仍是零向量关于相反向量有: (i)=; (ii) +()=()+=;(iii)若、是互为相反向量,则=
4、,=,+=向量减法:向量加上的相反向量叫做与的差,记作:求两个向量差的运算,叫做向量的减法作图法:可以表示为从的终点指向的终点的向量(、有共同起点)4实数与向量的积:实数与向量的积是一个向量,记作,它的长度与方向规定如下:();()当时,的方向与的方向相同;当时,的方向与的方向相反;当时,方向是任意的数乘向量满足交换律、结合律与分配律5两个向量共线定理:向量与非零向量共线有且只有一个实数,使得=6平面向量的基本定理:如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:其中不共线的向量叫做表示这一平面内所有向量的一组基底7 特别注意:(1)向量的加法与减法是互逆运算
5、(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况(4)向量的坐标与表示该向量的有向线条的始点、终点的具体位置无关,只与其相对位置有关平面向量的坐标运算知识点归纳 1平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量作为基底由平面向量的基本定理知,该平面内的任一向量可表示成,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标 (1)相等的向量坐标相同,坐标相同的向量是相等的向量(2)向
6、量的坐标与表示该向量的有向线段的始点、终点的具体位置无关,只与其相对位置有关2平面向量的坐标运算:(1) 若,则(2) 若,则(3) 若=(x,y),则=(x, y)(4) 若,则(5) 若,则若,则3向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质 运算类型几何方法坐标方法运算性质向量的加法1平行四边形法则2三角形法则向量的减法三角形法则向量的乘法是一个向量,满足:0时,与同向;0时,与异向;=0时, =向量的数量积是一个数或时,=0且时,平面向量的数量积知识点归纳 1两个向量的数量积:已知两个非零向量与,它们的夹角为,则=cos叫做与的数量积(或内积)
7、规定2向量的投影:cos=R,称为向量在方向上的投影投影的绝对值称为射影3数量积的几何意义: 等于的长度与在方向上的投影的乘积4向量的模与平方的关系:5乘法公式成立: ;6平面向量数量积的运算律:交换律成立:对实数的结合律成立:分配律成立:特别注意:(1)结合律不成立:;(2)消去律不成立不能得到(3)=0不能得到=或=7两个向量的数量积的坐标运算:已知两个向量,则=8向量的夹角:已知两个非零向量与,作=, =,则AOB= ()叫做向量与的夹角cos=当且仅当两个非零向量与同方向时,=00,当且仅当与反方向时=1800,同时与其它任何非零向量之间不谈夹角这一问题9垂直:如果与的夹角为900则称
8、与垂直,记作10两个非零向量垂直的充要条件:O平面向量数量积的性质线段的定比分点与平移知识点归纳 1线段的定比分点定义:设P1,P2是直线L上的两点,点P是L上不同于P1,P2的任意一点,则存在一个实数,使,叫做点P分有向线段所成的比当点P在线段上时,;当点P在线段或的延长线上时,0恒成立问题含参不等式axbxc0的解集是R;其解答分a0(验证bxc0是否恒成立)、a0(a0且0时,有;或 |f(x)|g(x)与g(x)f(x)g(x)同解(g(x)0)|f(x)|g(x) 与f(x)g(x)或f(x)g(x)(其中g(x)0);g(x)0同解4 零点分段法:高次不等式与分式不等式的简洁解法
9、步骤:形式:首项系数符号0标准式,若系数含参数时,须判断或讨论系数的符号,化负为正判断或比较根的大小绝对值不等式知识点归纳 1解绝对值不等式的基本思想:解绝对值不等式的基本思想是去绝对值,常采用的方法是讨论符号和平方2注意利用三角不等式证明含有绝对值的问题|a|b|a+b|a|+|b|;|a|b|ab|a|+|b|;并指出等号条件3(1)|f(x)|g(x)g(x)f(x)g(x)f(x)g(x)或f(x)g(x)(无论g(x)是否为正)(3)含绝对值的不等式性质(双向不等式) 左边在时取得等号,右边在时取得等号1常用不等式 ;(1)(当且仅当ab时取“=”号)(2)(当且仅当ab时取“=”号
10、)(3)(4)柯西不等式(5).2.已知都是正数,则有(1)若积是定值,则当时和有最小值;(2)若和是定值,则当时积有最大值.第三章 直线和圆的方程直线方程知识点归纳1数轴上两点间距离公式:2直角坐标平面内的两点间距离公式:3直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角当直线和x轴平行或重合时,我们规定直线的倾斜角为0可见,直线倾斜角的取值范围是01804直线的斜率:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k=tan(90)倾斜角是90的直线没有斜率;倾斜角
11、不是90的直线都有斜率,其取值范围是(,+)5直线的方向向量:设F1(x1,y1)、F2(x2,y2)是直线上不同的两点,则向量=(x2x1,y2y1)称为直线的方向向量向量=(1,)=(1,k)也是该直线的方向向量,k是直线的斜率特别地,垂直于轴的直线的一个方向向量为(0,1)6求直线斜率的方法定义法:已知直线的倾斜角为,且90,则斜率k=tan公式法:已知直线过两点P1(x1,y1)、P2(x2,y2),且x1x2,则斜率k=方向向量法:若=(m,n)为直线的方向向量,则直线的斜率k=平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率对于直线上任意两点P1(x1,y1)、P2
12、(x2,y2),当x1=x2时,直线斜率k不存在,倾斜角=90;当x1x2时,直线斜率存在,是一实数,并且k0时,=arctank;k0时,=+arctank7直线方程的五种形式点斜式:, 斜截式:两点式:, 截距式:一般式:两直线的位置关系知识点归纳1特殊情况下的两直线平行与垂直当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90,另一条直线的倾斜角为0,两直线互相垂直2斜率存在时两直线的平行与垂直:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它
13、们平行,即=且 已知直线、的方程为:,:的充要条件是 两条直线垂直的情形:如果两条直线的斜率分别是和,则这两条直线垂直的充要条件是已知直线和的一般式方程为:,:,则3直线到的角的定义及公式:直线按逆时针方向旋转到与重合时所转的角,叫做到的角 到的角:0180, 如果如果, 4直线与的夹角定义及公式: 到的角是, 到的角是-,当与相交但不垂直时, 和-仅有一个角是锐角,我们把其中的锐角叫两条直线的夹角当直线时,直线与的夹角是夹角:090如果如果, 5两条直线是否相交的判断两条直线是否有交点,就要看这两条直线方程所组成的方程组:是否有惟一解6点到直线距离公式:点到直线的距离为:7两平行线间的距离公
14、式已知两条平行线直线和的一般式方程为:,:,则与的距离为 8 直线系方程:若两条直线:,:有交点,则过与交点的直线系方程为或+ (为常数)简单的线性规划及实际应用知识点归纳1二元一次不等式表示平面区域:在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点P(x0,y0)B0时,Ax0+By0+C0,则点P(x0,y0)在直线的上方;Ax0+By0+C0,则点P(x0,y0)在直线的下方对于任意的二元一次不等式Ax+By+C0(或0),无论B为正值还是负值,我们都可以把y项的系数变形为正数当B0时,Ax+By+C0表示直线Ax+By+C=0上方的区域;Ax+By+C0表示直线Ax+By
15、+C=0下方的区域2线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题线性规划问题一般用图解法,其步骤如下:(1)根据题意,设出变量x、y;(2)找出线性约束条件;(3)确定线性目标函数z=f(x,y);(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f(x,y)=t(t为参数);(6)观察图形,找到直线f(x,y)=t在可行域上使t取得欲求
16、最值的位置,以确定最优解,给出答案1.斜率公式:(、).2.直线的五种方程 (1)点斜式 (直线过点,且斜率为)(2)斜截式 (b为直线在y轴上的截距).(3)两点式 ()(、 ().(4) 截距式 (分别为直线的横、纵截距,)(5)一般式 (其中A、B不同时为0).3.两条直线的平行和垂直 (1)若,;.(2)若,且A2、B2 、C2都不为零,;4.夹角公式:.(,,)直线时,直线l1与l2的夹角是.5. 到的角公式:.(,,)直线时,直线l1到l2的角是.6四种常用直线系方程(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数;经过定点的直线系方程为,其中是待定的系数(
17、2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中是待定的系数(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程与直线平行的直线系方程是(),是参变量(4)垂直直线系方程:与直线 (A0,B0)垂直的直线系方程是,是参变量7.点到直线的距离:(点,直线:).8. 或所表示的平面区域设直线,则或所表示的平面区域是:若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.曲线和方程知识点归纳1平面解析几何研究的主要问题:
18、根据已知条件求出表示平面曲线的方程;通过方程,研究平面曲线的性质 2“曲线的方程”、“方程的曲线”的定义:在直角坐标系中,如果某曲线C上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解;(纯粹性)(2)以这个方程的解为坐标的点都是曲线上的点(完备性)那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线 3定义的理解:设P=具有某种性质(或适合某种条件)的点,Q=(x,y)|f(x,y)=0,若设点M的坐标为(x0,y0),则用集合的观点,上述定义中的两条可以表述为:以上两条还可以转化为它们的等价命题(逆否命题):为曲线C的方程;曲线C为方程f(x,y)=0的曲线
19、(图形)在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件两者满足了,“曲线的方程”和“方程的曲线”才具备充分性只有符合关系(1)、(2),才能将曲线的研究转化为方程来研究,即几何问题的研究转化为代数问题这种“以数论形”的思想是解析几何的基本思想和基本方法4求简单的曲线方程的一般步骤:(1)建立适当的坐标系,用有序实数对表示曲线上任意一点M的坐标;(2)写出适合条件P的点M的集合;(3)用坐标表示条件P(M),列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点 上述方法简称“五步法”,在步骤中若化简过程是同解
20、变形过程;或最简方程的解集与原始方程的解集相同,则步骤可省略不写,因为此时所求得的最简方程就是所求曲线的方程5由方程画曲线(图形)的步骤:讨论曲线的对称性(关于x轴、y轴和原点);求截距:讨论曲线的范围;列表、描点、画线6交点:求两曲线的交点,就是解这两条曲线方程组成的方程组7曲线系方程:过两曲线f1(x,y)=0和f2(x,y)=0的交点的曲线系方程是f1(x,y)f2(x,y)=0(R)求轨迹有直接法、定义法和参数法,最常使用的就是参数法一个点的运动是受某些因素影响的所以求轨迹问题时,我们经常要分析作图过程,顺藤摸瓜,从中找出影响动点的因素最后确定一个或几个因素作为基本量,找出它们和动点坐
21、标的关系,列出方程这就是参数法圆的方程知识点归纳1圆的定义平面内与定点距离等于定长的点的集合(轨迹)叫圆2圆的标准方程圆心为(a,b),半径为r的圆的标准方程为方程中有三个参量a、b、r,因此三个独立条件可以确定一个圆3圆的一般方程二次方程x2+y2+Dx+Ey+F=0(*)配方得(x+)2+(y+)2=把方程其中,半径是,圆心坐标是叫做圆的一般方程(1)圆的一般方程体现了圆方程的代数特点:x2、y2项系数相等且不为零 没有xy项(2)当D2+E24F=0时,方程(*)表示点(,);当D2+E24F0时,方程(*)不表示任何图形(3)根据条件列出关于D、E、F的三元一次方程组,可确定圆的一般方
22、程4圆的参数方程圆心在O(0,0),半径为r的圆的参数方程是:圆心在点,半径为的圆的参数方程是:在中消去得x2+y2=r2,在中消去得(xa)2+(yb)2=r2,把这两个方程相对于它们各自的参数方程又叫做普通方程5二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件若二元二次方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆,则有A=C0,B=0,这仅是二元二次方程表示圆的必要条件,不充分在A=C0,B=0时,二元二次方程化为x2+y2+x+y+=0,仅当D2+E24AF0时表示圆故Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是:A=C0,B=0,D2+E2
23、4AF06 线段AB为直径的圆的方程: 若,则以线段AB为直径的圆的方程是7经过两个圆交点的圆系方程:经过,的交点的圆系方程是:在过两圆公共点的图象方程中,若=1,可得两圆公共弦所在的直线方程 8 经过直线与圆交点的圆系方程: 经过直线与圆的交点的圆系方程是:9确定圆需三个独立的条件(1)标准方程: , (2)一般方程:,( 对称问题知识点归纳1点关于点成中心对称的对称中心恰是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题设P(x0,y0),对称中心为A(a,b),则P关于A的对称点为P(2ax0,2by0)2点关于直线成轴对称问题由轴对称定义知,对称轴即为两对称点连
24、线的“垂直平分线”利用“垂直”“平分”这两个条件建立方程组,就可求出对顶点的坐标一般情形如下:设点P(x0,y0)关于直线y=kx+b的对称点为P(x,y),则有,可求出x、y特殊地,点P(x0,y0)关于直线x=a的对称点为P(2ax0,y0);点P(x0,y0)关于直线y=b的对称点为P(x0,2by0)3曲线关于点、曲线关于直线的中心或轴对称问题:一般是转化为点的中心对称或轴对称(这里既可选特殊点,也可选任意点实施转化)一般结论如下:(1)曲线f(x,y)=0关于已知点A(a,b)的对称曲线的方程是f(2ax,2by)=0(2)曲线f(x,y)=0关于直线y=kx+b的对称曲线的求法:设
25、曲线f(x,y)=0上任意一点为P(x0,y0),P点关于直线y=kx+b的对称点为P(y,x),则由(2)知,P与P的坐标满足从中解出x0、y0,代入已知曲线f(x,y)=0,应有f(x0,y0)=0利用坐标代换法就可求出曲线f(x,y)=0关于直线y=kx+b的对称曲线方程4两点关于点对称、两点关于直线对称的常见结论:(1)点(x,y)关于x轴的对称点为(x,y);(2)点(x,y)关于y轴的对称点为(x,y);(3)点(x,y)关于原点的对称点为(x,y);(4)点(x,y)关于直线xy=0的对称点为(y,x);(5)点(x,y)关于直线x+y=0的对称点为(y,x)直线与圆、圆与圆的位
26、置关系知识点归纳1研究圆与直线的位置关系最常用的方法:判别式法;考查圆心到直线的距离与半径的大小关系。直线与圆的位置关系有三种,若,则 ; ; 2两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,3直线和圆相切:这类问题主要是求圆的切线方程求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况过圆上一点的切线方程:圆为切点的切线方程是。当点在圆外时,表示切点弦的方程。一般地,曲线为切点的切线方程是:。当点在圆外时,表示切点弦的方程。这个结论只能用来做选择题或者填空题,若是做解答题,只能按照求切线方程的常规过程去做
27、。过圆外一点的切线方程:4直线和圆相交:这类问题主要是求弦长以及弦的中点问题5经过两个圆交点的圆系方程:经过,的交点的圆系方程是:。在过两圆公共点的图象方程中,若=1,可得两圆公共弦所在的直线方程6 经过直线与圆交点的圆系方程: 经过直线与圆的交点的圆系方程是:7几何法: 比较圆心到直线的距离与圆半径的大小8代数法: 讨论圆的方程与直线方程的实数解的组数9. 圆的四种方程(1)圆的标准方程 .(2)圆的一般方程 (0).(3)圆的参数方程 .(4)圆的直径式方程 【圆的直径的端点是、】.10. 圆系方程(1)过直线:与圆:的交点的圆系方程是,是待定的系数(2)过圆:与圆:的交点的圆系方程是,是
28、待定的系数11.点与圆的位置关系,点与圆的位置关系有三种:若,则(1)点在圆外;(2)点在圆上;(3)点在圆内.12.直线与圆的位置关系直线与圆的位置关系有三种: 其中(1);(2);(3).13.两圆位置关系的判定方法,设两圆圆心分别为O1,O2,半径分别为r1,r2,(1);(2);(3);(4);(5).(6)d=0同心圆。14.圆的切线方程(1)已知圆若已知切点在圆上,则切线只有一条,其方程是 .当圆外时, 表示过两个切点的切点弦方程过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线(2)已知圆过圆上的点的切线方程为;斜率为的圆的切线方程为.26