1、解一元二次方程配方法(第一课时)教学设计及说明一、本课数学内容的本质、地位、作用分析1.本课数学内容的本质配方法是从平方的定义求解一元二次方程的一种方法,是推导一元二次方程公式解的必要条件.2.教材的地位和作用配方法是以配方为手段、以平方根定义为依据解一元二次方程的一种基本方法,其中所涉及的完全平方式、求一个非负数的平方根以及解一元一次方程等都是学生已有的知识与技能,为本节课的学习奠定了知识技能方面的基础. 学生在七年级已经较好地掌握了一元一次方程的基本解法,初步了解到解方程的过程就是一个沟通“未知”与“已知”的过程,本节在此基础上,经历探索解方程的过程中,通过复杂问题向简单问题、特殊向一般的
2、转化,使学生进一步会转化、归纳等数学思想,总结配方法的基本思路.一元二次方程的解法在初等数学领域有着十分广泛的应用,它与二次函数(九年级)、二次不等式(高中)有着密切的联系,是进一步完善方程体系的有效载体.二、教学目标分析 1.知识技能(1)能正确运用平方根的定义解形如x2=n(n0)与(mx+ n)2=p(p0)的一元二次方程;(2) 能正确书写一元二次方程的根;(3)能指出转化后的两个一元二次方程. 会用配方法求出二次项系数为1、一次项系数为偶数(绝对值小于10)的一元二次方程的根 2. 数学思考在根据平方根的定义解形如x2=n(n0)的方程的过程中,能运用“整体性 ”将此方法迁移到解形如
3、(mx+ n)2=p(p0)的方程.3.解决问题在学习的过程,体会配方法的运用,并能求解形如a(ex+f)2+c=0型的一元二次方程,进一步发展符号感,提高代数运算能力.4.情感态度在探索活动中体验探究的乐趣,克服数学活动中的困难,促进形成学好数学的自信心,体会与他人作交流的优点。解一元二次方程配方法(第一课时 )教学设计教学目标 1.知识技能(1)能正确运用平方根的定义解形如x2=n(n0)与(mx+ n)2=p(p0)的一元二次方程;(2)能正确书写一元二次方程的根;(3)能指出转化后的两个一元二次方程. 会用配方法求出二次项系数为1、一次项系数为偶数(绝对值小于10)的一元二次方程的根
4、2. 数学思考在根据平方根的定义解形如x2=n(n0)的方程的过程中,能运用“整体性 ”将此方法迁移到解形如(mx+ n)2=p(p0)的方程.3.解决问题在学习的过程,体会配方法的运用,并能求解形如a(ex+f)2+c=0型的一元二次方程,进一步发展符号感,提高代数运算能力.4.情感态度体验探究的乐趣,克服数学活动中的困难,促进形成学好数学的自信心,体会与他人作交流的优点。重难点、关键重点:根据平方根的定义理解并能求解形如x2=n(n0、m x+ n)2=p(p0)的方程难点:解形如x2+ax+c=0(|a|10,且a为偶数)的方程.关键:将一元二次方程转化成两个一元一次方程教学过程一、问题
5、情境,导入新课南方某地区因连降暴雨,山体滑坡导致一条河流形成堰塞湖,为排除险情需要开凿400米长的泄洪渠,已知泄洪渠的截面为梯形下底是上底的3倍,高和上底长度相等,预计需挖土石方总量约为15000立方米求所挖泄洪渠的上底长度是多少米?解:设所挖泄洪渠的上底长度是x米,根据题意得 .师:这个方程是我们上节遇到的一元二次方程,如何解为类型的方程是本节课我们共同学习的目标. 上述方程可化x2 =25这个方程的解是什么?你会求解吗?生:x=5.师:你的依据是什么?生:我们在八年级学过平方根,用这一定义可得到x=5.师:我们今后将写作:x1=5,x2=5.生:x2=5 不合题意,应舍去因此所挖泄洪渠的上
6、底长度是5米师:很好!这位同学的数学思维很深刻!二、基于问题,探索方法妨照上述解方程的方法,你能解下列方程吗?(2x-1)2=9.(学生尝试)解:2x1=3.2x1=3或2x1=3.所以,方程的两根为 x1=2,,x2=1.师:具有什么结构牲的一元二次方程能用上述方法去解呢?你能举出这样的例子吗?生:举例:x2=49; x2=12; (x+1)2=4; (3x-2)2=5等.师:请同学求解上述方程的根,要求每人至少解两个方程,之后与同伴相互交流你的方法.归纳(学生):在解上述方程时,我们把原来的方程转化成两个一元一次方程.归纳(师):如果方程能化成或的形式,那么直接开平方可得或练习1(1)方程
7、x2=0.25的根是; (2)方程2x2=18的根是 ; (3)方程(x+1)2=1的根是. 例1 用开平方法解方程 9x2=4.师分析,示范完成解答.解:两边同除以9,得 x2=.利用开平方法,得 x= . 所以,原方程的根是例2 用开平方法解方程 3x2=4.解:两边同除以3,得 .因为负数没有平方根,所以原方程没有实数根.探究一:对于方程 x2+6x+9=25, x2+6x=16你会解吗?请解答并说说你的理由.x2+6x+9=25 . x2+6x=16. 观察比较x2+6x+9=16+9.(x+3)2=25.(x+3)2=25.探究二:如果换成方程x2+6x16=0你会解吗?移项变形.降
8、次配方师:在学生讨论方程x2+6x=16的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.练习2完成下列填空空题:; ; .问:利用配方法解下列方程,你能从中得到在配方时具有的规律吗?(1)x28x + 1 = 0;(板书)(2);(3)生:先独立思考,自主探索,然后交流配方时发现的规律分析交流:(1)中经过移项可以化为,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到,从而将原方程化为(x4)2=15;(2)中二
9、次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即,方程两边都加上,方程可以化为.(3)按照(2)的方式进行处理解: (1)移项,得 x2- 8x= -1.配方,得 x2- 8x+42= -1+42.(x-4)2 = 15.即:x- 4 = .所以,方程的根为:.(2)移项, 得 .二次项系数化为1,得 .配方得 .由此可得 . 即: . 所以, .(3)移项,得3x2- 6x= -4.二次项系数化为1,得 .配方,得 . 即: .所以,原方程无实根.师:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分
10、析利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式;(2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解练习3;.三、小结提升问:本节课你在哪些方面有了新的提高,受到什么启发?生(师完善):1.一般地,对于x2=p 或 (mx+n)2=p(p0)的方程,根据平方根的定义,用开平方法取求解. 2.如果一个一元二次方程不能直接开平方解,可把方程化为左边是含有x的完全平方形式,右边是非负数,再开平方降次的方法去求解.注意:配方时, 首先把二次项系数化为1,再在等式两边同时加上一次项系数一半的平方.教师引导学生归纳小结,学生反思学习和解决问题的过程四、布置作业1.必做题:课本P45 习题222 第1、2、3题.2. 选做题:如图,在ABC中,B=90,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后PBQ的面积等于8cm2?ABCQP