1、一元二次方程解决实际问题(教学案例)情景:一元二次方程像一元一次方程一样,在实际生活中有着广泛的应用。从问题情境中建立一元二次方程模型是解决问题的关键。在实际问题中,有一类问题运用一元二次方程惊醒方案设计。以情境引入课题,以同学生平等的身份提出问题,改变教师的权威地位,成为学生真正意义上的合作者。通过问题情境的设计,让学生主动的投入到学习过程中,使学生真正成为数学学习的主人,激发学生的探究愿望。师提出问题:现在我遇到这样的问题,看大家能否帮我解决?在一块长为m,宽为m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半。你觉得这个方案能实现吗?若可以实现,你能给出具体的设计方案吗?任
2、务:能够根据具体问题中的数量关系,列出方程;体会方程是刻画现实世界的一个有效的数学模型;能根据具体的实际意义,检验结果是否合理。本节则主要在于熟练运用配方法解方程,同时考虑到单纯的式的训练,比较枯燥,因此设计了一个方案设计活动,需要自行设计方案,因此需要适度的建模,为此制定本课时教学目标是:(1)通过一元二次方程的建模过程,体会方程的解必须符合实际意义,增强用数学的意识,巩固用配方法解一元二次方程;(2)通过设计方案培养学生创新思维能力,展示自己驾驭数学去解决实际问题的勇气、才能及个性。学生先自己设计,画出草图,然后到黑板上展示、交流自己的作品。通过征集设计方案,激发学生的内在动力。先独立思考
3、,独自设计,再合作交流、互相补充,充分发挥学生的主体作用,使教师真正成为学生学习的组织者、促进者、合作者。成果:学生的设计多种多样,这里只选具有代表性的几种。 (1) (2) 资源:利用多媒体课件帮助学生理解问题的实质,从而理清设计者的思路。提出了具有思考价值的问题,以导为主,层层深入,以问题串的形式指导学生懂得如何获得自己所需要的知识。活动内容:问题解答:1、 如何设未知数?怎样列方程?2、 分组解答图(1)、(2)所列的方程。图(1)的解答: 解:设小路的宽为xm,由题意得:(16-2x)(12-2x)=1612 整理,得:x -14x+24=0 x -14x+49=-24+49 (x-7
4、) =25 x1=12 ,x2=2答:(略)问题:你认为小路的宽为12m和2m都符合实际意义吗?图(2)的解答:解:设扇形的半径为xm,由题意得: x =1612 x =96 x= 5、5 x15、5 ,x2-5、5( 舍去)3、集体解答图(7):根据学生所列的方程进行解答。活动目的:通过问题的解答和验证,使学生明确用数学知识解决实际问题时,它的解要符合实际意义,增强用数学的意识,巩固用配方法解一元二次方程。教学效果:由于时间关系,分组解答图(5)和(6),部分同学忽视了验证解的合理性,这也是难免的,在学生发生这些问题时,适时提醒即可。 评估:在学生自行设计和展现作品时,教师可以提出具有挑战性
5、、开放性的问题,以激发学生的学习热情的问题:(1)怎样知道你的设计是符合要求的?你能说明你的设计是符合要求的吗?(2)以上图形哪些可以直接说明符合上面条件的?剩下的图形怎样通过计算来说明?同时让学生知道设计得对与否,数据是最好的说明,如何来计算数据,通过列一元二次方程来解决,这样顺利引入本课的研究内容。此外,课堂上没来的及展示的可以留作课后探讨,这样做也体现了“不同的人在数学上得到不同的发展”的课程理念,既没超出教材的要求,又达到了适当拔高、激发学生学习兴趣以及培养能力的目的。教学反思:新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实
6、中去,体会数学在现实中应用价值。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,活跃了课堂气氛。1、在课堂上将更多教学时间留给学习小组,这样小组中,个人的成功会带来团体的成功,进而导致团体内其他成员的成功,因而学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互尊重、相互欣赏。2、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。3、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励,以及组织小组合作学习,帮助学生形成积极主动求知态度,课堂收效大。由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。同时我的分组以位置为准,前后交流,这样层次不大合理,有待于课前做好思考与准备。