收藏 分销(赏)

2013年普通高等学校全国招生统一考试数学(新课标Ⅰ卷)理科与答案(14).doc

上传人:仙人****88 文档编号:6709955 上传时间:2024-12-20 格式:DOC 页数:15 大小:8.69MB
下载 相关 举报
2013年普通高等学校全国招生统一考试数学(新课标Ⅰ卷)理科与答案(14).doc_第1页
第1页 / 共15页
2013年普通高等学校全国招生统一考试数学(新课标Ⅰ卷)理科与答案(14).doc_第2页
第2页 / 共15页
2013年普通高等学校全国招生统一考试数学(新课标Ⅰ卷)理科与答案(14).doc_第3页
第3页 / 共15页
2013年普通高等学校全国招生统一考试数学(新课标Ⅰ卷)理科与答案(14).doc_第4页
第4页 / 共15页
2013年普通高等学校全国招生统一考试数学(新课标Ⅰ卷)理科与答案(14).doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、2013年普通高等学校招生全国各省市统一考试数学试卷与答案 2013年普通高等学校招生全国统一考试(新课标卷)(理科数学)精校精析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的.1已知集合,则(A) (B) (C) (D)1【答案】B解析 Ax|x2,故2 若复数z满足(34i)z|43i|,则z的虚部为()A4 B C4 D.2【答案】D解析 zi,故z的虚部是.3 为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大在下面的抽样

2、方法中,最合理的抽样方法是()A简单随机抽样 B按性别分层抽样C按学段分层抽样 D系统抽样3【答案】C解析 因为总体中所要调查的因素受学段影响较大,而受性别影响不大,故按学段分层抽样4 已知双曲线C:1(a0,b0)的离心率为,则C的渐近线方程为()Ayx ByxCyx Dyx4【答案】C解析 离心率,所以.由双曲线方程知焦点在x轴上,故渐近线方程为yx.图115 执行如图11所示的程序框图,如果输入的t1,3,则输出的s属于()A3,4B5,2C4,3D2,55【答案】A解析 由框图可知,当t1,1)时,s3t,故此时s3,3);当t1,3时,s4tt2(t2)24,故此时s3,4,综上,s

3、3,4图126 如图12所示, 有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为() A. cm3B. cm3C. cm3 D. cm36【答案】A解析 设球的半径为R,则球的截面圆的半径是4,且球心到该截面的距离是R2,故R2(R2)242R5,所以VR3(cm3)7 设等差数列an的前n项和为Sn,若Sm12,Sm0,Sm13,则m()A3 B4 C5 D67【答案】C解析 设首项为a1,公差为d,由题意可知amSmSm12,am1Sm1Sm3,故d1.又Sm0,故a1am2,

4、又Smma1d0,2m0m5.8 某几何体的三视图如图13所示,则该几何体的体积为()图13A168 B88C1616 D8168【答案】A解析 由三视图可知该组合体下半部分是一个半圆柱,上半部分是一个长方体,故体积为V224224168.9 设m为正整数,(xy)2m展开式的二项式系数的最大值为a,(xy)2m1展开式的二项式系数的最大值为b.若13a7b,则 m()A5 B6 C7 D89【答案】B解析 (x2y)2m展开式的二项式系数的最大值是C,即aC;(x2y)2m1展开式的二项式系数的最大值是C,即bC,13a7b,13C7C,137,易得m6.10 已知椭圆E:1(ab0)的右焦

5、点为F(3,0),过点F的直线交E于A,B两点,若AB的中点坐标为(1,1),则E的方程为()A.1 B.1C.1 D.110【答案】D解析 由题意知kAB,设A(x1,y1),B(x2,y2),则0.由AB的中点是(1,1)知,联立a2b29,解得a218,b29,故椭圆E的方程为1.11, 已知函数f(x)若|f(x)|ax,则a的取值范围是()A(,0 B(,1C2,1 D2,011【答案】D解析 方法一:若x0,|f(x)|x22x|x22x,x0时,不等式恒成立,x0时,不等式可变为ax2,而x20,|f(x)|ln(x1)|ln(x1),由ln(x1)ax,可得a恒成立,令h(x)

6、,则h(x),再令g(x)ln(x1),则g(x)0,故g(x)在(0,)上单调递减,所以g(x)g(0)0,可得h(x)0,a0.综上可知,2a0,故选D.方法二:数形结合:画出函数|f(x)|与直线yax的图像,如下图,要使|f(x)|ax恒成立,只要使直线yax的斜率最小时与函数yx22x,x0在原点处的切线斜率相等即可,最大时与x轴的斜率相等即可,因为y2x2,所以y|x02,所以2a0.12 设AnBnCn的三边长分别为an,bn,cn,AnBnCn的面积为Sn,n1,2,3,.若b1c1,b1c12a1,an1an,bn1,cn1,则()ASn为递减数列BSn为递增数列CS2n1为

7、递增数列,S2n为递减数列DS2n1为递减数列,S2n为递增数列12【答案】B解析 因为an1an,所以ana1.又因为bn1cn1(bncn)an(bncn)a1,所以bn1cn12a1(bncn2a1)因为b1c12a10,所以bncn2a1,故AnBnCn中边BnCn的长度不变,另外两边AnBn,AnCn的和不变因为bn1cn1(bncn),且b1c10,所以bncn(b1c1),当n时,bncn,也就是AnCnAnBn,所以三角形AnBnCn中BnCn边上的高随着n的增大而增大设三角形AnBnCn中BnCn边上的高为hn,则hn单调递增,所以Sna1hn是增函数答案为B.二. 填空题:

8、本大题共4小题,每小题5分.13 已知两个单位向量,的夹角为60,t(1t),若0,则t_13【答案】2解析 因为|1,所以t(1t)t1t0,所以t2.14 若数列an的前n项和Snan,则an的通项公式是an_14【答案】(2)n1解析 因为Snan,所以Sn1an1,得ananan1,即an2an1,又因为S1a1a1a11,所以数列an是以1为首项,2为公比的等比数列,所以an(2)n1.15 设当x时,函数f(x)sin x2cos x取得最大值,则cos _15【答案】解析 因为f(x)sin x2cos xsin(x),所以当x2k(k),即x2k(k)时,yf(x)取得最大值,

9、则cos cos xcossin ,由可得sin,所以cos.16 若函数f(x)(1x2)(x2axb)的图像关于直线x2对称,则f(x)的最大值为_16【答案】16解析 方法一:因为f(x)4x33ax22(1b)xa,函数f(x)是连续可导函数,且关于直线x2对称,所以f(2)0,即f(2)3212a4(1b)a0,可得11a4b28,又因为f(0)f(4),所以15a4b60,联立方程组可得a8,b15,f(x)(1x2)(x28x15),f(x)4(x36x27x2),因为2是函数f(x)的一个极值点,所以f(x)4(x2),可知当x时,f(x)单调递增,当x时,f(x)单调递减,当

10、x时,f(x)单调递增,当x时,f(x)单调递减,且ff,所以fff806416.方法二:令f0可得x1或x1,因为函数f(x)的图像关于直线x2对称,所以,可得以下同方法一三、解答题:解答应写出文字说明,证明过程或演算步骤.17 如图14所示,在ABC中,ABC90,AB,BC1,P为ABC内一点,BPC90.(1)若PB,求PA;(2)若APB150,求tan PBA.图1417【答案】解:(1)由已知得, PBC60,所以PBA30.在PBA中,由余弦定理得PA232cos 30.故PA.(2)设PBA,由已知得PBsin .在PBA中,由正弦定理得,化简得cos 4sin .所以tan

11、 ,即tan PBA.18 如图15所示,三棱柱ABCA1B1C1中,CACB,ABAA1,BAA160.(1)证明:ABA1C;(2)若平面ABC平面AA1B1B,ABCB,求直线A1C与平面BB1C1C所成角的正弦值图1518【答案】解:(1)证明:取AB的中点O,联结OC,OA1,A1B.因为CACB,所以OCAB.由于ABAA1,BAA160,故AA1B为等边三角形,所以OA1AB.因为OCOA1O,所以AB平面OA1C.又A1C平面OA1C,故ABA1C.(2)由(1)知OCAB,OA1AB.又平面ABC平面AA1B1B,交线为AB,所以OC平面AA1B1B,故OA,OA1,OC两两

12、相互垂直以O为坐标原点,的方向为x轴的正方向,|为单位长,建立如图所示的空间直角坐标系Oxyz.由题设知A(1,0,0),A1(0,0),C(0,0,),B(1,0,0)则(1,0,),(1,0),(0,)设(x,y,z)是平面BB1C1C的法向量,则即 可取(,1,1)故cos ,.所以A1C与平面BB1C1C所成角的正弦值为.19, 一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n4.再从这批产品中任取1件作检验;若为优质品,则这批产品通过检验;其他情况下,这

13、批产品都不能通过检验假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为,且各件产品是否为优质品相互独立(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望19【答案】解:(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A(A1B1)(A2B2),且A1B1与 A2B2互斥,所以P(A)P(A1B1

14、)P(A2B2)P(A1)P(B1|A1)P(A2)P(B2|A2).(2)X可能的取值为400,500,800,并且P(X400)1,P(X500),P(X800).所以X的分布列为X400500800PE(X)400500800506.25.20, 已知圆M:(x1)2y21,圆N:(x1)2y29,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.20【答案】解:由已知得圆M的圆心为M(1,0),半径r11;圆N的圆心为N(1,0),半径r23.设圆P的圆心为P(x,y

15、),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|PN|(Rr1)(r2R)r1r24.由椭圆的定义可知,曲线C是以M, N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为1(x2)(2)对于曲线C上任意一点P(x,y),由于|PM|PN|2R22,所以R2,当且仅当圆P的圆心为(2,0)时,R2,所以当圆P的半径最长时,其方程为(x2)2y24.若l的倾斜角为90,则l与y轴重合,可得|AB|2 .若l的倾斜角不为90,由r1R知l不平行于x轴,设l与x轴的交点为Q,则,可求得Q(4,0),所以可设l:yk(x4)由l与圆M相切得1,解得k.当k时,将yx

16、代入1,并整理得7x28x80.解得x1,2.所以|AB|x2x1|.当k时,由图形的对称性可知|AB|.综上,|AB|2 或|AB|.21 设函数f(x)x2axb,g(x)ex(cxd)若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y4x2.(1)求a,b,c,d的值;(2)若x2时,f(x)kg(x),求k的取值范围21【答案】解:(1)由已知得f(0)2,g(0)2,f(0)4,g(0)4.而f(x)2xa,g(x)ex(cxdc),故b2,d2,a4,dc4.从而a4,b2,c2,d2.(2)由(1)知,f(x)x24x2,g(x)2ex(x1)设函数F(

17、x)kg(x)f(x)2kex(x1)x24x2,则F(x)2kex(x2)2x42(x2)(kex1)由题设可得F(0)0,即k1.令F(x)0得x1ln k,x22.若1ke2,则2x10,从而当x(2,x1)时,F(x)0,即F(x)在(2,x1)上单调递减,在(x1,)上单调递增故F(x)在2,)上的最小值为F(x1)而F(x1)2x12x4x12x1(x12)0.故当x2时,F(x)0,即f(x)kg(x)恒成立若ke2,则F(x)2e2(x2)(exe2)从而当x2时,F(x)0,即F(x)在(2,)上单调递增,而F(2)0,故当x2时,F(x)0,即f(x)kg(x)恒成立若ke

18、2,则F(2)2ke222e2(ke2)0,从而当x2时,f(x)kg(x)不可能恒成立综上,k的取值范围是1,e2图1622 选修41:几何证明选讲如图16所示,直线AB为圆的切线,切点为B,点C在圆上,ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DBDC;(2)设圆的半径为1,BC,延长CE交AB于点F,求BCF外接圆的半径22【答案】解:(1)证明:联结DE,交BC于点G.由弦切角定理得,ABEBCE.而ABECBE,故CBEBCE,BECE.又因为DBBE,所以DE为直径,DCE90,由勾股定理可得DBDC.(2)由(1)知,CDEBDE,DBDC,故DG是BC

19、的中垂线,所以BG.设DE的中点为O,联结BO,则BOG60.从而ABEBCECBE30,所以CFBF,故RtBCF外接圆的半径等于.23 选修44:坐标系与参数方程已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为2sin .(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(0,02)23【答案】解:(1)将消去参数t,化为普通方程(x4)2(y5)225,即C1:x2y28x10y160.将代入x2y28x10y160,得28cos 10sin 160.所以C1的极坐标方程为28cos 10sin 160.(2)C2的普通方程为x2y22y0,由解得或所以C1与C2交点的极坐标分别为,.24 选修45:不等式选讲已知函数f(x)|2x1|2xa|,g(x)x3.(1)当a2时,求不等式f(x)g(x)的解集;(2)设a1,且当x时,f(x)g(x),求a的取值范围24【答案】解:(1)当a2时,不等式f(x)g(x)化为|2x1|2x2|x30.设函数y|2x1|2x2|x3,则y其图像如图所示,从图像可知,当且仅当x(0,2)时,y0,所以原不等式的解集是x|0x2(2)当x时,f(x)1a.不等式f(x)g(x)化为1ax3.所以xa2对x都成立,故a2,即a,从而a的取值范围是.15

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服