1、第一单元 幂的运算测试题一、选择题:1下列计算中,错误的是( )Amnm2n+1 = m3n+1 B(am1)2 = a 2m2C(a2b)n = a2nbnD(3x2)3 = 9x6 2若xa = 3,xb = 5,则xa+b的值为( )A8B15 C35D533计算(c2)n(cn+1)2等于( )Ac4n+2BcCcDc3n+44与( 2a2)35的值相等的是( )A 25a30 B 215a 30C( 2a2)15 D( 2a)305下列计算正确的是( )A(xy)3 = xy3 B(2xy)3 = 6x3y3C(3x2)3 = 27x5D(a2b)n = a2nbn6下列各式错误的是
2、( )A(23)4 = 212 B( 2a)3 = 8a3C(2mn2)4 = 16m4n8 D(3ab)2 = 6a2b27下列各式计算中,错误的是( )A(m6)6 = m36 B(a4)m = (a 2m)2Cx2n = (xn)2 Dx2n = (x2)n二、解答题:1已知32n+1+32n = 324,试求n的值2已知 2m = 3,4n = 2,8k = 5,求 8m+2n+k的值3计算:x2(x3)24 4如果am = 5,an = 7,求a 2m+n的值幂的运算测试题答案:一、选择题:1、D说明:mnm2n+1 = mn+2n+1 = m3n+1,A中计算正确;(am1)2 =
3、 a2(m1) = a 2m2,B中计算正确; (a2b)n = (a2)nbn = a2nbn,C中计算正确;(3x2)3 = (3)3(x2)3 = 27x6,D中计算错误;所以答案为D2、B说明:因为xa = 3,xb = 5,所以xa+b = xaxb = 35 = 15,答案为B3、A说明:(c2)n(cn+1)2 = c2nc2(n+1) = c2nc2n+2 = c2n+2n+2 = c4n+2,所以答案为A4、C说明:( 2a2)35 = ( 2a2)35 = ( 2a2)15,所以答案为C5、D说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y
4、3,B错;(3x2)3 = (3)3(x2)3 = 27x6,C错;(a2b)n = (a2)nbn = a2nbn,D正确,答案为D6、C说明:(23)4 = 234 = 212,A中式子正确;( 2a)3 = (2) 3a3 = 8a3,B中式子正确;(3ab)2 = 32a2b2 = 9a2b2,C中式子错误;(2mn2)4 = 24m4(n2)4 = 16m4n8,D中式子正确,所以答案为C7、D说明:(m6)6 = m66 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(xn)2 = x2n,C计算正确;当n为偶数时,(x2)n = (x
5、2)n = x2n;当n为奇数时,(x2)n = x2n,所以D不正确,答案为D二、解答题:1解:由32n+1+32n = 324得332n+32n = 324,即432n = 324,32n = 81 = 34,2n = 4,n = 22解析:因为 2m = 3,4n = 2,8k = 5所以 8m+2n+k = 8m82n8k = (23)m(82)n8k = 23m(43)n8k = ( 2m)3(4n)38k = 33235 = 2785 = 10803答案:x32解:x2(x3)24 = (x2x32)4 = (x2x6)4 = (x2+6)4= (x8)4 = x84 = x324
6、答案:a 2m+n = 175解:因为am = 5,an = 7,所以a 2m+n = a 2man = (am)2an = (5)27 = 257 = 175第二单元 整式的乘法测试题一、选择题:1对于式子(x2)n xn+3(x0),以下判断正确的是( )Ax0时其值为正 Bxx35的解集为x9(x2)(x+3)的正整数解6计算:3y(y4)(2y+1)(2y3)(4y2+6y9)整式的乘法测试题答案:一、选择题:1 C说明:(x2)n的符号由n的奇偶性决定当n为奇数时,n+1为偶数,则只要x0,xn+1即为正,所以(x2) n xn+3 = (xn+1)3,为正;n为偶数时,n+1为奇数
7、,则xn+1的正负性要由x的正负性决定,因此(x2) n xn+3 = (xn+1)3,其正负性由x的正负性决定;所以正确答案为C2 D说明:(xyz)2(yx+z)(zx+y) = (xyz)4,因此,代数式(xyz)2(yx+z)(zx+y)的值一定是非负数,即正确答案为D3 B说明:原方程变形为:x23x23x = 5x2x2+8,8x = 8,x = 1,答案为B4 C说明:利用长方体的体积公式可知该长方体的体积应该是长宽高,即( 3a4) 2aa = 6a3 8a2,答案为C5 D说明:(a4+ 4a2+16) a24(a4+ 4a2+16) = a6+ 4a4+ 16a2 4a4
8、16a264 = (2)664 = 0,答案为D6 A说明:(x3y+4z)(6x) = 6x2+18xy24xz,A错,经计算B、C、D都是正确的,答案为A7 A说明:(3x4y)(5x+6y) = 15x2+18xy20xy24y2 = 15x22xy24y2,A错;经计算B、C、D都正确,答案为A8 D说明:(6ab2 4a2b)3ab = 6ab23ab 4a2b3ab = 18a2b3 12a3b,A计算错误;(x)(2x+x21) = x2x+(x)x2(x) = 2x2x3+x = x32x2+x,B计算错误;(3x2y)(2xy+3yz1) = (3x2y) (2xy)+(3x
9、2y) 3yz(3x2y) = 6x3y29x2y2z+3x2y,C计算错误;(a3b)2ab = (a3) 2ab(b)2ab =a4bab2,D计算正确,所以答案为D9 B说明:因为(x2)(x+3) = xx2x+3x6 = x2+x6,所以a = 1,b = 6,答案为B10 D说明:( 2a1)( 5a+2) = 2a 5a1 5a+ 2a212 = 10a2 5a+ 4a2 = 10a2a2,所以答案为D二、解答题:1 2003说明:(3x2)(x22x3)+3x(x32x23x)+2003 = 3x4+6x3+9x2+3x46x39x2+2003 = 20032 x =说明:将原
10、方程化简,6x213x+6 = 6x2x5,12x = 11,x =3原式= 6y2+18y+18 = 25说明:原式= y32y26y2+12y9y+18y3+2y2+15y = 6y2+18y+18 = 6(y23y3) = 6(3) = 254 43,55说明:我们可以直接来计算x8和x4的系数,先看x8的系数,第一个括号中的x8项与第二个括号中的常数项相乘可以得到一个x8的项,第一个括号中的x6项与第二个括号中的x2项相乘也可得到一个x8的项,另外,第一个括号中的x3项与第二个括号中的x5项相乘,结果也是x8项,因此,展开式中x8的系数应该是这三部分x8项的系数之和,即2(8)+(3)
11、2+(7)3 = 43;x4的系数为4(8)+(7)3+2(1) = 555 x = 1、2、3、4说明:原不等式变形为9x2169x2+9x54,9x38,xN BMN CMN D不能确定7对于任何整数m,多项式( 4m+5)29都能( )A被8整除 B被m整除C被(m1)整除 D被(2n1)整除8将3x2n6xn分解因式,结果是( )A3xn(xn+2) B3(x2n+2xn) C3xn(x2+2) D3(x2n2xn) 9下列变形中,是正确的因式分解的是( )A 0.09m2 n2 = ( 0.03m+ )( 0.03m)Bx210 = x291 = (x+3)(x3)1Cx4x2 =
12、(x2+x)(x2x) D(x+a)2(xa)2 = 4ax10多项式(x+yz)(xy+z)(y+zx)(zxy)的公因式是( )Ax+yz Bxy+z Cy+zx D不存在11已知x为任意有理数,则多项式x1x2的值( )A一定为负数B不可能为正数C一定为正数D可能为正数或负数或零二、解答题:分解因式:(1)(ab+b)2(a+b)2 (2)(a2x2)24ax(xa)2(3)7xn+114xn+7xn1(n为不小于1的整数)因式分解测试题答案:一、选择题:1B说明:右边进行整式乘法后得16x481 = (2x)481,所以n应为4,答案为B2B说明:因为9x212xy+m是两数和的平方式
13、,所以可设9x212xy+m = (ax+by)2,则有9x212xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = 12,b2y2 = m;得到a = 3,b = 2;或a = 3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B3D说明:先运用完全平方公式,a4 2a2b2+b4 = (a2b2)2,再运用两数和的平方公式,两数分别是a2、b2,则有(a2b2)2 = (a+b)2(ab)2,在这里,注意因式分解要分解到不能分解为止;答案为D4C说明:(a+b)24(a2b2)+4(ab)2 = (a+b)22(a+b)2(ab)+2(ab)
14、2 = a+b2(ab)2 = (3ba)2;所以答案为C5B说明:()2001+()2000 = ()2000()+1 = ()2000 = ()2001 = ()2001,所以答案为B6B说明:因为MN = x2+y22xy = (xy)20,所以MN7A说明:( 4m+5)29 = ( 4m+5+3)( 4m+53) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1)8A9D说明:选项A,0.09 = 0.32,则 0.09m2 n2 = ( 0.3m+n)( 0.3mn),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2x)可继续分解为x2(x+1)(x
15、1);所以答案为D10A说明:本题的关键是符号的变化:zxy = (x+yz),而xy+zy+zx,同时xy+z(y+zx),所以公因式为x+yz11B说明:x1x2 = (1x+x2) = (1x)20,即多项式x1x2的值为非正数,正确答案应该是B二、解答题: (1) 答案:a(b1)(ab+2b+a)说明:(ab+b)2(a+b)2 = (ab+b+a+b)(ab+bab) = (ab+2b+a)(aba) = a(b1)(ab+2b+a) (2) 答案:(xa)4说明:(a2x2)24ax(xa)2 = (a+x)(ax)24ax(xa)2 = (a+x)2(ax)24ax(xa)2 = (xa)2(a+x)24ax = (xa)2(a2+2ax+x24ax) = (xa)2(xa)2 = (xa)4 (3) 答案:7xn1(x1)2说明:原式 = 7xn1 x27xn1 2x+7xn1 = 7xn1(x22x+1) = 7xn1(x1)2