1、1如图,在平面直角坐标系xOy中,已知抛物线经过点A(0,4),B(1,0),C(5,0),抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴;(2)设点P为抛物线(x5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数,请你直接写出点P的坐标;(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使NAC的面积最大?若存在,请你求出点N的坐标;若不存在,请说明理由2阅读下面的材料:小明在学习中遇到这样一个问题:若1xm,求二次函数的最大值他画图研究后发现,和时的函数值相等,于是他认为需要对进行分类讨论他的解答过程如下:二次函数的对称轴为
2、直线,由对称性可知,和时的函数值相等若1m5,则时,的最大值为2;若m5,则时,的最大值为请你参考小明的思路,解答下列问题:(1)当x4时,二次函数的最大值为_;(2)若px2,求二次函数的最大值;(3)若txt+2时,二次函数的最大值为31,则的值为_3如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(B、C不重合).连结CB,CP。(1)当时,求点A的坐标及BC的长;(2)过点P作PEPC且PE=PC,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并写出相对应的点E坐标;若不存在,请说明理由。4已知抛物线
3、与y轴交于C点,与x轴交于A、B两点,点A的坐标是(1,0),O是坐标原点,且(1)求抛物线的函数表达式; (2)直接写出直线BC的函数表达式;(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与OBC重叠部分的面积为s,运动的时间为t秒(0t2).求:s与t之间的函数关系式; 在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.42014年暑假练习二