收藏 分销(赏)

圆锥曲线问题.doc

上传人:仙人****88 文档编号:6652436 上传时间:2024-12-19 格式:DOC 页数:12 大小:463.50KB
下载 相关 举报
圆锥曲线问题.doc_第1页
第1页 / 共12页
圆锥曲线问题.doc_第2页
第2页 / 共12页
圆锥曲线问题.doc_第3页
第3页 / 共12页
圆锥曲线问题.doc_第4页
第4页 / 共12页
圆锥曲线问题.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、直线与圆锥曲线:弦长问题引例:已知椭圆C:,直线过C的右焦点F交椭圆于两点,求弦长|的取值范围。变式1:求的面积的最大值变式2:若椭圆的右顶点为M,求的取值范围。变式3:若D(4,2),过点D作椭圆的两条切线,切点分别为P,Q,过点D作直线m交椭圆于E,F两点,交PQ于点K.问是否存在实数t,使得恒成立。例1.已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,()当时,求的面积;()当时,求的取值范围例2已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:yx+3与椭圆E有且只有一个公共点T.(I)求椭圆E的方程及点T的坐标;(II)设O是坐标原点,直线l平行于

2、OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数,使得PT2=PA PB,并求的值.1设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.2平面直角坐标系中,过椭圆的右焦点作直交于两点,为的中点,且的斜率为.()求的方程;()为上的两点,若四边形的对角线,求四边形面积的最大值.3.如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直

3、线,其中交圆于两点,交椭圆于另一点(1)求椭圆的方程; (2)求面积取最大值时直线的方程.xOyBl1l2PDA例1.已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,()当时,求的面积;()当时,求的取值范围当时,椭圆E的方程为,A点坐标为,则直线AM的方程为联立并整理得,解得或,则因为,所以因为,所以,整理得,无实根,所以所以的面积为直线AM的方程为,联立并整理得,解得或,所以所以因为所以,整理得,因为椭圆E的焦点在x轴,所以,即,整理得解得已知椭圆E:的两个焦点与短轴的一个端点是直角三角形的3个顶点,直线l:yx+3与椭圆E有且只有一个公共点T.(I)求椭圆E的方程及点T的

4、坐标;(II)设O是坐标原点,直线l平行于OT,与椭圆E交于不同的两点A、B,且与直线l交于点P.证明:存在常数,使得PT2=PA PB,并求的值.有方程组 得.方程的判别式为,由,得,此方程的解为,所以椭圆E的方程为.点T坐标为(2,1).由得.所以 ,同理,所以.故存在常数,使得设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【解析】()因为,故,所以,故.又圆的标准方程为,从而,所以.由题设得,由椭圆定义可得点的轨迹方程为:().平面直角坐标系中,过椭圆的右焦点作直交于两点,为的中点,且的斜率为.()求的方程;()为上的两点,若四边形的对角线,求四边形面积的最大值. 如图,点是椭圆的一个顶点,的长轴是圆的直径.是过点且互相垂直的两条直线,其中交圆于两点,交椭圆于另一点(1)求椭圆的方程; (2)求面积取最大值时直线的方程.xOyBl1l2PDA(第21题图)【答案】解:()由已知得到,且,所以椭圆的方程是; ()因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦; 由,所以 ,所以 , 当时等号成立,此时直线

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服