资源描述
2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图①,在矩形中,,对角线相交于点,动点由点出发,沿向点运动.设点的运动路程为,的面积为,与的函数关系图象如图②所示,则边的长为( ).
A.3 B.4 C.5 D.6
2.如图方格纸中每个小正方形的边长均为1,点P、A、C都在小正方形的顶点上.某人从点P出发,沿过A、C、P三点的圆走一周,则这个人所走的路程是( )
A. B. C. D.不确定
3.是关于的一元一次方程的解,则( )
A. B. C.4 D.
4.如图,在菱形ABCD中,对角线AC、BD相交于点O,,则四边形AODE一定是( )
A.正方形 B.矩形 C.菱形 D.不能确定
5.抛物线的顶点坐标是( )
A. B. C. D.
6.如图,是内两条互相垂直的直径,则的度数是( )
A. B. C. D.
7.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )
A. B. C. D.
8.如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是( )
A. B. C. D.
9.下面的图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
10.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )
A.70° B.65° C.60° D.55°
二、填空题(每小题3分,共24分)
11.已知关于x的方程x2-3x+m=0的一个根是1,则m=__________.
12.如图,扇形的圆心角是为,四边形是边长为的正方形,点分别在在弧上,那么图中阴影部分的面积为__________.(结果保留)
13.经过某十字路口的汽车,它可能直行,也可能向左转或向右转,假设这三种可能性大小相同,那么两辆汽车经过这个十字路口,一辆向左转,一辆向右转的概率是_____.
14.方程的解是______________.
15.化简:-(sin60°﹣1)0﹣2cos30°=________________.
16.如图,有一张直径为1.2米的圆桌,其高度为0.8米,同时有一盏灯距地面2米,圆桌在水平地面上的影子是,∥,和是光线,建立如图所示的平面直角坐标系,其中点的坐标是.那么点的坐标是_________.
17.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(﹣3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是_____.
18.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.
三、解答题(共66分)
19.(10分)放寒假,小明的爸爸把油箱注满油后准备驾驶汽车到距家300的学校接小明,在接到小明后立即按原路返回,已知小明爸爸汽车油箱的容积为70,请回答下列问题:
(1)写出油箱注满油后,汽车能够行使的总路程与平均耗油量之间的函数关系式;
(2)小明的爸爸以平均每千米耗油0.1的速度驾驶汽车到达学校,在返回时由于下雨,小明的爸爸降低了车速,此时每千米的耗油量增加了一倍,如果小明的爸爸始终以此速度行使,油箱里的油是否够回到家?如果不够用,请通过计算说明至少还需加多少油?
20.(6分)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.
(1)试说明四边形EFCG是矩形;
(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,
①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;
②求点G移动路线的长.
21.(6分)如图,抛物线与轴交于点和,与轴交于点顶点为.
求抛物线的解析式;
求的度数;
若点是线段上一个动点,过作轴交抛物线于点,交轴于点,设点的横坐标为.
①求线段的最大值;
②若是等腰三角形,直接写出的值.
22.(8分)解方程:x2﹣6x+8=1.
23.(8分)如图①,四边形ABCD与四边形CEFG都是矩形,点E,G分别在边CD,CB上,点F在AC上,AB=3,BC=4
(1)求的值;
(2)把矩形CEFG绕点C顺时针旋转到图②的位置,P为AF,BG的交点,连接CP
(Ⅰ)求的值;
(Ⅱ)判断CP与AF的位置关系,并说明理由.
24.(8分)我们把端点都在格点上的线段叫做格点线段.如图,在7×7的方格纸中,有一格点线段AB,按要求画图.
(1)在图1中画一条格点线段CD将AB平分.
(2)在图2中画一条格点线段EF.将AB分为1:1.
25.(10分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:
(1)观众区的水平宽度;
(2)顶棚的处离地面的高度.(,,结果精确到)
26.(10分)如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东53°方向,距离B地516千米,C地位于A地南偏东45°方向.现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程.(结果精确到1千米)(参考数据:sin53°=,cos53°=,tan53°=)
参考答案
一、选择题(每小题3分,共30分)
1、B
【分析】当点在上运动时,面积逐渐增大,当点到达点时,结合图象可得面积最大为1,得到与的积为12;当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,得到与的和为7,构造关于的一元二方程可求解.
【详解】解:当点在上运动时,面积逐渐增大,当点到达点时,面积最大为1.
∴,即.
当点在上运动时,面积逐渐减小,当点到达点时,面积为0,此时结合图象可知点运动路径长为7,
∴.
则,代入,得,解得或1,
因为,即,
所以.
故选B.
【点睛】
本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.
2、C
【分析】根据题意作△ACP的外接圆,根据网格的特点确定圆心与半径,求出其周长即可求解.
【详解】如图,△ACP的外接圆是以点O为圆心,OA为半径的圆,
∵AC=,AP=,CP=,
∴AC2=AP2+CP2
∴△ACP是等腰直角三角形
∴O点是AC的中点,
∴AO=CO=OP=
∴这个人所走的路程是
故选C.
【点睛】
此题主要考查三角形的外接圆,解题的关键是熟知外接圆的作法与网格的特点.
3、A
【分析】先把x=1代入方程得a+2b=-1,然后利用整体代入的方法计算2a+4b的值
【详解】将x=1代入方程x2+ax+2b=0,
得a+2b=-1,2a+4b=2(a+2b)=2×(-1)=-2.
故选A.
【点睛】
此题考查一元二次方程的解,整式运算,掌握运算法则是解题关键
4、B
【分析】根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;
【详解】证明:∵DE∥AC,AE∥BD,
∴四边形AODE是平行四边形,
∵四边形ABCD是菱形,
∴AC⊥BD,
∴∠AOD=∠AOD=90°,
∴四边形AODE是矩形.
故选B.
【点睛】
本题考查了菱形的性质、矩形的判定与性质、平行四边形的判定;熟练掌握矩形的判定与性质、菱形的性质是解决问题的关键.
5、D
【分析】当 时,是抛物线的顶点,代入求出顶点坐标即可.
【详解】由题意得,当 时,是抛物线的顶点
代入到抛物线方程中
∴顶点的坐标为
故答案为:D.
【点睛】
本题考查了抛物线的顶点坐标问题,掌握求二次函数顶点的方法是解题的关键.
6、C
【分析】根据直径的定义与等腰三角形的性质即可求解.
【详解】∵是内两条互相垂直的直径,
∴AC⊥BD
又OB=OC
∴==
故选C.
【点睛】
此题主要考查圆内的角度求解,解题的关键是熟知圆内等腰三角形的性质.
7、B
【解析】分析: 先利用列表法展示所以6种等可能的结果,其中小亮恰好站在中间的占2种,然后根据概率定义求解.
详解: 列表如下:
,
共有6种等可能的结果,其中小亮恰好站在中间的占2种,
所以小亮恰好站在中间的概率=.
故选B.
点睛:本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
8、C
【分析】根据抛物线解析式可求得点A(-4,0),B(4,0),故O点为AB的中点,又Q是AP上的中点可知OQ=BP,故OQ最大即为BP最大,即连接BC并延长BC交圆于点P时BP最大,进而即可求得OQ的最大值.
【详解】∵抛物线与轴交于、两点
∴A(-4,0),B(4,0),即OA=4.
在直角三角形COB中
BC=
∵Q是AP上的中点,O是AB的中点
∴OQ为△ABP中位线,即OQ=BP
又∵P在圆C上,且半径为2,
∴当B、C、P共线时BP最大,即OQ最大
此时BP=BC+CP=7
OQ=BP=.
【点睛】
本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.
9、C
【分析】根据轴对称图形和中心对称图形的定义进行判断即可.
【详解】解:A、不是轴对称图形,是中心对称图形,故此选项错误;
B、不是轴对称图形,是中心对称图形,故此选项错误;
C、既是轴对称图形,也是中心对称图形,故此选项正确;
D、是轴对称图形,不是中心对称图形,故此选项错误;
故选C.
【点睛】
本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.
10、B
【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
【详解】∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
∴∠AA′C=45°,
∵∠1=20°,
∴∠B′A′C=45°-20°=25°,
∴∠A′B′C=90°-25°=65°,
∴∠B=65°.
故选B.
【点睛】
本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
二、填空题(每小题3分,共24分)
11、1
【解析】试题分析:∵关于x的方程的一个根是1,∴1﹣3×1+m=0,解得,m=1,故答案为1.
考点:一元二次方程的解.
12、
【分析】由正方形的性质求出扇形的半径,求得扇形的面积,再减去正方形OEDC的面积即可解答,
【详解】解:∵正方形OCDE的边长为1,
∴OD=
∵扇形的圆心角是为
∴扇形的面积为
∴阴影部分的面积为-1
故答案为-1.
【点睛】
本题考查了扇形的面积计算,确定扇形的半径并求扇形的面积是解答本题的关键.
13、
【分析】列举出所有情况,让一辆向左转,一辆向右转的情况数除以总情况数即为所求的可能性.
【详解】
一辆向左转,一辆向右转的情况有两种,则概率是.
【点睛】
本题考查了列表法与树状图法,用到的知识点为:可能性=所求情况数与总情况数之比.
14、,
【分析】根据题意先移项,再提取公因式,求出x的值即可.
【详解】解:移项得,x(x-3)-x=0,
提取公因式得,x(x-3-1)=0,即x(x-4)=0,
解得,.
故答案为:,.
【点睛】
本题考查的是解一元二次方程-因式分解法,熟练利用因式分解法解一元二次方程是解答此题的关键.
15、-1
【分析】根据实数的性质即可化简求解.
【详解】-(sin60°﹣1)0﹣2cos30°=-1-2×=-1-=-1
故答案为:-1.
【点睛】
此题主要考查实数的运算,解题的关键是熟知特殊三角函数值的求解.
16、
【分析】先证明△ABC∽△ADE,再根据相似三角形的性质:相似三角形的对应高的比等于相似比求解即可.
【详解】解:∵BC∥DE,
∴△ABC∽△ADE,
∴,
∵BC=1.2,
∴DE=2,
∴E(4,0).
故答案为:(4,0).
【点睛】
本题考查了中心投影,相似三角形的判定和性质,准确识图,熟练掌握相似三角形的对应高的比等于相似比是解题的关键.
17、.x1=-3,x2=2
【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(−3,0),(2,0),
∴当x=−3或x=2时,y=0,
即方程的解为
故答案为:
18、60°.
【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.
【详解】∵△ABC中,∠A、∠B都是锐角,sinA=,cosB=,
∴∠A=∠B=60°.
∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.
故答案为:60°.
【点睛】
本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.
三、解答题(共66分)
19、(1);(2)不够,至少要加油20L
【分析】(1)根据总路程×平均耗油量=油箱总油量求解即可;
(2)先计算去时所用油量,再计算返回时用油量,与油箱中剩余油量作比较即可得出答案.
【详解】解:(1)由题意可得出总路程与平均耗油量的函数关系式为:;
(2)小明的爸爸始终以此速度行使,油箱里的油不能够回到家
小明爸爸去时用油量是:()
油箱剩下的油量是:()
返回每千米用油量是:()
返回时用油量是:().
所以,油箱里的油不能够回到家,至少要加油:
【点睛】
本题考查的知识点是求反比例函数的解析式,比较基础,易于掌握.
20、(1)证明见解析;(2)①存在,矩形EFCG的面积最大值为12,最小值为;②.
【解析】试题分析:(1)只要证到三个内角等于90°即可.
(2)①易证点D在⊙O上,根据圆周角定理可得∠FCE=∠FDE,从而证到△CFE∽△DAB,根据相似三角形的性质可得到S矩形ABCD=2S△CFE=.然后只需求出CF的范围就可求出S矩形ABCD的范围.
②根据圆周角定理和矩形的性质可证到∠GDC=∠FDE=定值,从而得到点G的移动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.
试题解析:解:(1)证明:如图,
∵CE为⊙O的直径,∴∠CFE=∠CGE=90°.
∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.
∴四边形EFCG是矩形.
(2)①存在.
如答图1,连接OD,
∵四边形ABCD是矩形,∴∠A=∠ADC=90°.
∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.
∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴.
∵AD=1,AB=2,∴BD=5.
∴. ∴S矩形ABCD=2S△CFE=.
∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.
∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.
∵∠FDE+∠CDB=90°,∴∠GDC+∠CDB=90°.∴∠GDB=90°
Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如答图1所示.
此时,CF=CB=1.
Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如答图2所示,此时⊙O与射线BD相切,CF=CD=2.
Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如答图2所示.S△BCD=BC•CD=BD•CF″′.
∴1×2=5×CF″′.∴CF″′=.
∴≤CF≤1.
∵S矩形ABCD=,∴,即.
∴矩形EFCG的面积最大值为12,最小值为.
②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,
∴点G的移动路线是线段DG″.
∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.
∴,即,解得.
∴点G移动路线的长为.
考点:1.圆的综合题;2.单动点问题;2.垂线段最短的性质;1.直角三角形斜边上的中线的性质;5.矩形的判定和性质;6.圆周角定理;7.切线的性质;8.相似三角形的判定和性质;9.分类思想的应用.
21、(1)y=x2-4x+2,(2)90°,(2)①,②m=2或m=或m=1.
【分析】(1)将点B,C代入抛物线的解析式中,利用待定系数法即可得出答案;
(2)先求出点D的坐标,然后利用OB=OC,得出∠CBO=45°,过D作DE⊥x 轴,垂足为E,再利用DE=BE,得出∠DBO=45°,则的度数可求;
(2)①先用待定系数法求出直线BC的表达式,然后设出M,N的坐标,表示出线段MN的长度,利用二次函数的性质即可求出最大值;
②分三种情况: BN=BM, BN=MN, NM=BM分别建立方程求解即可.
【详解】解:(1)将点B(2,0)、C(0,2)代入抛物线y=x2+bx+c中,
得:,解得:.
故抛物线的解析式为y=x2-4x+2.
(2)y=x2-4x+2=(x-2)2-1,
∴D点坐标为(2,-1).
∵OB=OC=2,
∴∠CBO=45°,
过D作DE⊥x 轴,垂足为E,则DE=BE=1,
∴∠DBO=45°,
∴∠CBD=90°.
(2)①设直线BC的解析式为y=kx+2,得:0=2k+2,解得:k=-1,
∴直线BC的解析式为y=-x+2.
点M的坐标为(m,m2-4m+2),点N的坐标为(m,-m+2).
线段MN=(-m+2)-(m2-4m+2)=-m2+2m=-(m-)2+.
∴当m=时,线段MN取最大值,最大值为.
②在Rt△NBH中,BH=2-m,BN=(2-m).
当BN=BM时,NH=MH,则-m+2=-(m2-4m+2),
即m2-5m+6=0,解得m1=2,m2=2(舍去),
当BN=MN时,-m2+2m=(2-m),解得:m1=,m2=2(舍去),
当NM=BM时,∠MNB=∠NBM=45°,则MB与x轴重合,点M与点A重合,
∴m=1,
综合得:m=2或m=或m=1.
【点睛】
本题主要考查二次函数与几何综合,掌握二次函数的图象和性质是解题的关键.
22、x1=2 x2=2.
【分析】应用因式分解法解答即可.
【详解】解:x2﹣6x+8=1
(x﹣2)(x﹣2)=1,
∴x﹣2=1或x﹣2=1,
∴x1=2 x2=2.
【点睛】
本题考查了解一元二次方程﹣因式分解法,解答关键是根据方程特点进行因式分解.
23、(1);(2)(Ⅰ);(Ⅱ)CP⊥AF,理由:见解析.
【解析】(1)根据矩形的性质得到∠B=90°,根据勾股定理得到AC=5,根据相似三角形的性质即可得到结论;
(2)(Ⅰ)连接CF,根据旋转的性质得到∠BCG=∠ACF,根据相似三角形的判定和性质定理得到结论;
(Ⅱ)根据相似三角形的性质得到∠BGC=∠AFC,推出点C,F,G,P四点共圆,根据圆周角定理得到∠CPF=∠CGF=90°,于是得到结论.
【详解】(1)∵四边形ABCD是矩形,
∴∠B=90°,
∵AB=3,BC=4,
∴AC=5,
∴,
∵四边形CEFG是矩形,
∴∠FGC=90°,
∴GF∥AB,
∴△CGF∽△CBA,
∴,
∵FG∥AB,
∴;
(2)(Ⅰ)连接CF,
∵把矩形CEFG绕点C顺时针旋转到图②的位置,
∴∠BCG=∠ACF,
∵,
∴△BCG∽△ACF,
∴;
(Ⅱ)CP⊥AF,
理由:∵△BCG∽△ACF,
∴∠BGC=∠AFC,
∴点C,F,G,P四点共圆,
∴∠CPF=∠CGF=90°,
∴CP⊥AF.
【点睛】
本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.
24、(1)见解析;(2)见解析.
【分析】(1)根据矩形ACBD即可解决问题.
(2)利用平行线分线段成比例定理解决问题即可.
【详解】解:(1)如图,线段CD即为所求.
(2)如图,线段EF即为所求,注意有两种情形.
【点睛】
本题考查作图-应用与设计,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题.
25、(1)观众区的水平宽度为;(2)顶棚的处离地面的高度约为.
【分析】(1)利用坡度的性质进一步得出,然后据此求解即可;
(2)作于,于,则四边形、为矩形,再利用三角函数进一步求出EN长度,然后进一步求出答案即可.
【详解】(1)观众区的坡度为,顶端离水平地面的高度为,
∴,
,
答:观众区的水平宽度为;
(2)如图,作于,于,则四边形、为矩形,
m,m,m,
在中,,
则m,
,
答:顶棚的处离地面的高度约为.
【点睛】
本题主要考查了三角函数的实际应用,熟练掌握相关方法是解题关键.
26、建成高铁后从B地前往C地的路程约为722千米.
【分析】作AD⊥BC于D,分别根据正弦、余弦的定义求出BD、AD,再根据等腰直角三角形的性质求出CD的长,最后计算即可.
【详解】解:如图:作AD⊥BC于D,
在Rt△ADB中,cos∠DAB= ,sin∠DAB=,
∴AD=AB•cos∠DAB=516×=309.6,BD=AB•sin∠DAB=516×=412.8,
在Rt△ADC中,∠DAC=45°,
∴CD=AD=309.6,
∴BC=BD+CD≈722,
答:建成高铁后从B地前往C地的路程约为722千米.
【点睛】
本题考查了方向角问题,掌握方向角的概念和熟记锐角三角函数的定义是解答本题的关键.
展开阅读全文