1、福建省漳州市中考数学试卷福建省漳州市中考数学试卷一、单项选择题(共一、单项选择题(共 10 小题,每小题小题,每小题 4 分,满分分,满分 40 分)分)1(4 分)(福建漳州)如图,数轴上有 A、B、C、D 四个点,其中表示互为相反数的点是()A点 A 与点 D B点 A 与点 C C点 B 与点 D D点 B 与点 C2(4 分)(福建漳州)如图,1 与2 是()A对顶角B同位角C内错角D 同旁内角3(4 分)(福建漳州)下列计算正确的是()A=2B31=C(1)2014=1D|2|=24(4 分)(福建漳州)下列图形中,既是轴对称图形又是中心对称图形的是()ABCD5(4 分)(福建漳州
2、)若代数式 x2+ax 可以分解因式,则常数 a 不可以取()A1B0C1D 26(4 分)(福建漳州)如图,在 54 的方格纸中,每个小正方形边长为 1,点O,A,B 在方格纸的交点(格点)上,在第四象限内的格点上找点 C,使ABC的面积为 3,则这样的点 C 共有()A2 个B3 个C4 个D 5 个7(4 分)(福建漳州)中学生骑电动车上学给交通安全带来隐患,为了解某中学2500 个学生家长对“中学生骑电动车上学”的态度,从中随机调查 400 个家长,结果有 360 个家长持反对态度,则下列说法正确的是()A调查方式是普查B 该校只有 360 个家长持反对态度 C样本是 360 个家长D
3、该校约有 90%的家长持反对大度8(4 分)(福建漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A7 盒B8 盒C9 盒D 10 盒9(4 分)(福建漳州)如图,有以下 3 个条件:AC=AB,ABCD,1=2,从这 3 个条件中任选 2 个作为题设,另 1 个作为结论,则组成的命题是真命题的概率是()A0BCD 110(4 分)(福建漳州)世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点 A 沿 AO 匀速直达土楼中心古井点 O 处,停留拍照后,从点 O 沿OB 也匀速走到点 B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心 O 的
4、距离 s 随时间 t 变化的图象是()AB CD二、填空题(共二、填空题(共 6 小题,每小题小题,每小题 4 分,满分分,满分 24 分)分)11(4 分)(福建漳州)若菱形的周长为 20cm,则它的边长是 cm12(4 分)(福建漳州)双曲线 y=所在象限内,y 的值随 x 值的增大而减小,则满足条件的一个数值 k 为 13(4 分)(福建漳州)在中国梦我的梦演讲比赛中,将 5 个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是 分14(4 分)(福建漳州)如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点 O 任意转动其中一个三角尺,则与AOD 始终相等的角是 15(4
5、 分)(福建漳州)水仙花是漳州市花,如图,在长为 14m,宽为 10m 的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为 m16(4 分)(福建漳州)已知一列数 2,8,26,80,按此规律,则第 n 个数是 (用含 n 的代数式表示)三、解答题(共三、解答题(共 9 小题,满分小题,满分 86 分)分)17(8 分)(福建漳州)先化简,再求值:(x+1)(x1)x(x1),其中x=18(8 分)(福建漳州)解不等式组:19(8 分)(福建漳州)如图,点 C,F 在线段 BE 上,BF=EC,1=2,请你添加一个条件,使ABCDEF,并加以证明(不再添加辅助
6、线和字母)20(8 分)(福建漳州)如图,ABC 中,AB=AC,A=36,称满足此条件的三角形为黄金等腰三角形请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括ABC)(1)在图 1 中画 1 条线段,使图中有 2 个等腰三角形,并直接写出这 2 个等腰三角形的顶角度数分别是 度和 度;(2)在图 2 中画 2 条线段,使图中有 4 个等腰三角形;(3)继续按以上操作发现:在ABC 中画 n 条线段,则图中有 个等腰三角形,其中有 个黄金等腰三角形21(8 分)(福建漳州)某中学组织网络安全知识竞赛活动,其中七年级 6 个班组每班参赛人数相同,学校对该年级的获奖人数进
7、行统计,得到每班平均获奖15 人,并制作成如图所示不完整的折线统计图(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是 班;(2)若二班获奖人数占班级参赛人数的 32%,则全年级参赛人数是 人;(3)若该年级并列第一名有男、女同学各 2 名,从中随机选取 2 名参加市级比赛,则恰好是 1 男 1 女的概率是 22(10 分)(福建漳州)将一盒足量的牛奶按如图 1 所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点 P 时停止倒入 图 2 是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到 0.1cm)(参考数据:1.73,1.41)23(10 分)
8、(福建漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用 1200 元购进一批杨梅,很快售完;老板又用 2500 元购进第二批杨梅,所购件数是第一批的 2 倍,但进价比第一批每件多了 5 元(1)第一批杨梅每件进价多少元?(2)老板以每件 150 元的价格销售第二批杨梅,售出 80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于 320 元,剩余的杨梅每件售价至少打几折?(利润=售价进价)24(12 分)(福建漳州)阅读材料:如图 1,在AOB 中,O=90,OA=OB,点 P 在 AB 边上,PEOA 于点 E,PFOB 于点 F,则 PE+PF=OA(此结论不必证明
9、,可直接应用)(1)【理解与应用】如图 2,正方形 ABCD 的边长为 2,对角线 AC,BD 相交于点 O,点 P 在 AB 边上,PEOA 于点 E,PFOB 于点 F,则 PE+PF 的值为 (2)【类比与推理】如图 3,矩形 ABCD 的对角线 AC,BD 相交于点 O,AB=4,AD=3,点 P 在 AB边上,PEOB 交 AC 于点 E,PFOA 交 BD 于点 F,求 PE+PF 的值;(3)【拓展与延伸】如图 4,O 的半径为 4,A,B,C,D 是O 上的四点,过点 C,D 的切线CH,DG 相交于点 M,点 P 在弦 AB 上,PEBC 交 AC 于点 E,PFAD 于点F
10、,当ADG=BCH=30时,PE+PF 是否为定值?若是,请求出这个定值;若不是,请说明理由25(14 分)(福建漳州)已知抛物线 l:y=ax2+bx+c(a,b,c 均不为 0)的顶点为 M,与 y 轴的交点为 N,我们称以 N 为顶点,对称轴是 y 轴且过点 M 的抛物线为抛物线 l 的衍生抛物线,直线 MN 为抛物线 l 的衍生直线(1)如图,抛物线 y=x22x3 的衍生抛物线的解析式是 ,衍生直线的解析式是 ;(2)若一条抛物线的衍生抛物线和衍生直线分别是 y=2x2+1 和 y=2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线 y=x22x3 的顶点为 M,与 y
11、轴交点为 N,将它的衍生直线 MN 先绕点 N 旋转到与 x 轴平行,再沿 y 轴向上平移 1 个单位得直线 n,P 是直线 n 上的动点,是否存在点 P,使POM 为直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由福建省漳州市中考数学试卷福建省漳州市中考数学试卷参考答案与试题解析参考答案与试题解析一、单项选择题(共一、单项选择题(共 10 小题,每小题小题,每小题 4 分,满分分,满分 40 分)分)1(4 分)(福建漳州)如图,数轴上有 A、B、C、D 四个点,其中表示互为相反数的点是()A点 A 与点 D B点 A 与点 C C点 B 与点 D D点 B 与点 C【分析】
12、根据只有符号不同的两个数互为相反数,可得答案【解答】解:2 与2 互为相反数,故选:A【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数2(4 分)(福建漳州)如图,1 与2 是()A对顶角B同位角C内错角D 同旁内角【考点】同位角、内错角、同旁内角【分析】根据同位角的定义得出结论【解答】解:1 与2 是同位角故选:B【点评】本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键3(4 分)(福建漳州)下列计算正确的是()A=2B31=C(1)2014=1D|2|=2【考点】算术平方根;绝对值;有理数的乘方;负整数指数幂【分析】根据算术平方根的定义,负整数指数次
13、幂等于正整数指数次幂的倒数,有理数的乘方,绝对值的性质对各选项分析判断利用排除法求解【解答】解:A、=2,故本选项错误;B、31=,故本选项错误;C、(1)2014=1,故本选项正确;D、|2|=2,故本选项错误故选 C【点评】本题考查了算术平方根的定义,有理数的乘方,绝对值的性质,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记概念与性质是解题的关键4(4 分)(福建漳州)下列图形中,既是轴对称图形又是中心对称图形的是()ABCD【考点】中心对称图形;轴对称图形【分析】根据中心对称图形的定义旋转 180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线
14、折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误故选 C【点评】此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴5(4 分)(福建漳州)若代数式 x2+ax 可以分解因式,则常数 a 不可以取()A1B0C1D 2【考点】因式分解-提公因式法【分析】利用提取公因式法分解因式的方法得出即可【解答】
15、解:代数式 x2+ax 可以分解因式,常数 a 不可以取 0故选;B【点评】此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键6(4 分)(福建漳州)如图,在 54 的方格纸中,每个小正方形边长为 1,点O,A,B 在方格纸的交点(格点)上,在第四象限内的格点上找点 C,使ABC的面积为 3,则这样的点 C 共有()A2 个B3 个C4 个D 5 个【考点】坐标与图形性质;三角形的面积【分析】根据点 A、B 的坐标判断出 ABx 轴,然后根据三角形的面积求出点 C到 AB 的距离,再判断出点 C 的位置即可【解答】解:由图可知,ABx 轴,且 AB=3,设点 C 到
16、AB 的距离为 h,则ABC 的面积=3h=3,解得 h=2,点 C 在第四象限,点 C 的位置如图所示,共有 3 个故选 B【点评】本题考查了坐标与图形性质,三角形面积,判断出 ABx 轴是解题的关键7(4 分)(福建漳州)中学生骑电动车上学给交通安全带来隐患,为了解某中学2500 个学生家长对“中学生骑电动车上学”的态度,从中随机调查 400 个家长,结果有 360 个家长持反对态度,则下列说法正确的是()A调查方式是普查B 该校只有 360 个家长持反对态度 C样本是 360 个家长D该校约有 90%的家长持反对大度【考点】全面调查与抽样调查;总体、个体、样本、样本容量【分析】根据抽查与
17、普查的定义以及用样本估计总体解答即可【解答】解:A共 2500 个学生家长,从中随机调查 400 个家长,调查方式是抽样调查,故本项错误;B 在调查的 400 个家长中,有 360 个家长持反对态度,该校只有 2500=2250个家长持反对态度,故本项错误;C样本是 360 个家长对“中学生骑电动车上学”的态度,故本项错误;D该校约有 90%的家长持反对态度,本项正确,故选:D【点评】本题考查了抽查与普查的定义以及用样本估计总体,这些是基础知识要熟练掌握8(4 分)(福建漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A7 盒B8 盒C9 盒D 10 盒【
18、考点】由三视图判断几何体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形【解答】解:易得第一层有 4 碗,第二层最少有 2 碗,第三层最少有 1 碗,所以至少共有 7 盒故选 A【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案9(4 分)(福建漳州)如图,有以下 3 个条件:AC=AB,ABCD,1=2,从这 3 个条件中任选 2 个作为题设,另 1 个作为结论,则组成的命题是真命题的概率是()A0BCD 1【考点】列表法与树状图法;平行线的判定与性质;等腰三角
19、形的判定与性质;命题与定理【专题】计算题【分析】根据题意找出组成命题的所有等可能的情况数,找出组成的命题是真命题的情况数,即可求出所求的概率【解答】解:所有等可能的情况有 3 种,分别为;,其中组成命题是真命题的情况有:;,则 P=1,故选 D【点评】此题考查了列表法与树状图法,平行线的性质与判定,等腰三角形的判定与性质,以及命题与定理,弄清题意是解本题的关键10(4 分)(福建漳州)世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点 A 沿 AO 匀速直达土楼中心古井点 O 处,停留拍照后,从点 O 沿OB 也匀速走到点 B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心 O
20、 的距离 s 随时间 t 变化的图象是()AB CD【考点】动点问题的函数图象【分析】从 AO 的过程中,s 随 t 的增大而减小;直至 s=0;从 OB 的过程中,s随 t 的增大而增大;从 B 沿回到 A,s 不变【解答】解:如图所示,当小王从 A 到古井点 O 的过程中,s 是 t 的一次函数,s 随 t 的增大而减小;当停留拍照时,t 增大但 s=0;当小王从古井点 O 到点 B 的过程中,s 是 t 的一次函数,s 随 t 的增大而增大当小王回到南门 A 的过程中,s 等于半径,保持不变综上所述,只有 C 符合题意故选:C【点评】主要考查了动点问题的函数图象此题首先正确理解题意,然后
21、根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势二、填空题(共二、填空题(共 6 小题,每小题小题,每小题 4 分,满分分,满分 24 分)分)11(4 分)(福建漳州)若菱形的周长为 20cm,则它的边长是5cm【考点】菱形的性质【分析】由菱形 ABCD 的周长为 20cm,根据菱形的四条边都相等,即可求得其边长解答:解:四边形 ABCD 是菱形,AB=BC=CD=AD,菱形 ABCD 的周长为 20cm,边长为:204=5(cm)故答案为:5【点评】此题考查了菱形的性质,注意掌握菱形四条边都相等定理的应用是解此题的关键,比较容易解答12(4 分)(福建漳州)双曲线 y=所在象限内
22、,y 的值随 x 值的增大而减小,则满足条件的一个数值 k 为3(答案不唯一)【考点】反比例函数的性质【专题】开放型【分析】首先根据反比例函数的性质可得 k+10,再解不等式即可【解答】解:双曲线 y=所在象限内,y 的值随 x 值的增大而减小,k+10,解得:k1,k 可以等于 3(答案不唯一)故答案为:3(答案不唯一)【点评】此题主要考查了反比例函数的性质,关键是掌握对于反比例函数(k0),当 k0,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随x 的增大而减小;当 k0,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大13(4 分)(福建漳州)在中国梦
23、我的梦演讲比赛中,将 5 个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是9分【考点】中位数【分析】将所有成绩排序后找到中间位置的数就是这组数据的中位数【解答】解:5 个数据分别为:8,8,9,9,10,位于中间位置的数为 9,故中位数为 9 分,故答案为:9【点评】考查了中位数的定义,正确的排序是解答本题的关键,难度较小14(4 分)(福建漳州)如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点 O 任意转动其中一个三角尺,则与AOD 始终相等的角是BOC【考点】余角和补角【分析】因为是一幅三角尺,所以AOB=COD=90,再利用AOD=AOBBOD=90BOD,BOC=
24、CODBOD=90BOD,同角的余角相等,可知与AOD 始终相等的角是BOC【解答】解:AOB=COD=90,AOD=AOBBOD=90BOD,BOC=CODBOD=90BOD,AOD=BOC故答案为:BOC【点评】本题主要考查了余角和补角用到同角的余角相等15(4 分)(福建漳州)水仙花是漳州市花,如图,在长为 14m,宽为 10m 的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为16m【考点】二元一次方程组的应用【专题】几何图形问题【分析】设小长方形的长为 xm,宽为 ym,由图可知,长方形展厅的长是(2x+y)m,宽为(x+2y)m,由此列出方程组求得
25、长、宽,进一步解决问题【解答】解:设小长方形的长为 xm,宽为 ym,由图可得解得 x+y=8,每个小长方形的周长为 82=16m故答案为:16【点评】此题考查二元一次方程组的运用,看清图意,正确利用图意列出方程组解决问题16(4 分)(福建漳州)已知一列数 2,8,26,80,按此规律,则第 n 个数是3n1(用含 n 的代数式表示)【考点】规律型:数字的变化类【分析】根据观察等式,可发现规律,根据规律,可得答案【解答】解;已知一列数 2,8,26,80,按此规律,则第 n 个数是 3n1,故答案为:3n1【点评】本题考查了数字的变化类,规律是第几个数就是 3 的几次方减 1三、解答题(共三
26、、解答题(共 9 小题,满分小题,满分 86 分)分)17(8 分)(福建漳州)先化简,再求值:(x+1)(x1)x(x1),其中x=【考点】整式的混合运算化简求值【分析】先算乘法,再合并同类项,最后代入求出即可【解答】解:原式=x21x2+x=x1,当 x=时,原式=1=【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力,题目比较好,难度适中18(8 分)(福建漳州)解不等式组:【考点】解二元一次方程组【专题】计算题【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可【解答】解:由得:x2;由得:x1,则不等式组的解集为 1x2【点评】此题考查了解二元一次
27、方程组,熟练掌握运算法则是解本题的关键19(8 分)(福建漳州)如图,点 C,F 在线段 BE 上,BF=EC,1=2,请你添加一个条件,使ABCDEF,并加以证明(不再添加辅助线和字母)【考点】全等三角形的判定【专题】开放型【分析】先求出 BC=EF,添加条件 AC=DF,根据 SAS 推出两三角形全等即可【解答】AC=DE证明:BF=EC,BFCF=ECCF,BC=EF,在ABC 和DEF 中ABCDEF【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有 SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一20(8 分)(福建漳州)如图,ABC 中,AB=
28、AC,A=36,称满足此条件的三角形为黄金等腰三角形请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括ABC)(1)在图 1 中画 1 条线段,使图中有 2 个等腰三角形,并直接写出这 2 个等腰三角形的顶角度数分别是108度和36度;(2)在图 2 中画 2 条线段,使图中有 4 个等腰三角形;(3)继续按以上操作发现:在ABC 中画 n 条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形【考点】作图应用与设计作图;黄金分割【分析】(1)利用等腰三角形的性质以及A 的度数,进而得出这 2 个等腰三角形的顶角度数;(2)利用(1)种思路进而得出符合题意的图形;(
29、3)利用当 1 条直线可得到 2 个等腰三角形;当 2 条直线可得到 4 个等腰三角形;当 3 条直线可得到 6 个等腰三角形,进而得出规律求出答案【解答】解:(1)如图 1 所示:AB=AC,A=36,当 AE=BE,则A=ABE=36,则AEB=108,则EBC=36,这 2 个等腰三角形的顶角度数分别是 108 度和 36 度;故答案为:108,36;(2)如图 2 所示:(3)如图 3 所示:当 1 条直线可得到 2 个等腰三角形;当 2 条直线可得到 4 个等腰三角形;当 3 条直线可得到 6 个等腰三角形;在ABC 中画 n 条线段,则图中有 2n 个等腰三角形,其中有 n 个黄金
30、等腰三角形故答案为:2n,n【点评】此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形的规律是解题关键21(8 分)(福建漳州)某中学组织网络安全知识竞赛活动,其中七年级 6 个班组每班参赛人数相同,学校对该年级的获奖人数进行统计,得到每班平均获奖15 人,并制作成如图所示不完整的折线统计图(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是四班;(2)若二班获奖人数占班级参赛人数的 32%,则全年级参赛人数是300人;(3)若该年级并列第一名有男、女同学各 2 名,从中随机选取 2 名参加市级比赛,则恰好是 1 男 1 女的概率是【考点】折线统计图;列表法与树状图法
31、【专题】数形结合【分析】(1)共有 156=90 人获奖,然后用 90 分别减去其他 5 个班的获奖人数即可得到三班获奖人数,然后将折线统计图补充完整,并且可得到四班有 17 人获奖,获奖人数最多;(2)先计算出二班参赛人数,然后乘以 6 即可得到全年级参赛人数;(3)先画树状图展示所有 12 种等可能的结果数,再找出恰好是 1 男 1 女所占的结果数,然后根据概率公式求解【解答】解:(1)三班获奖人数=6151416171515=13,折线统计图如图,该年级获奖人数最多的班级为四班;(2)二班参赛人数=1632%=50(人),所以全年级参赛人数=650=300(人);(3)画树状图为:,共有
32、 12 种等可能的结果数,其中恰好是 1 男 1 女占 8 种,所以恰好是 1 男 1 女的概率=【点评】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来以折线的上升或下降来表示统计数量增减变化折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况也考查了列表法与树状图法22(10 分)(福建漳州)将一盒足量的牛奶按如图 1 所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点 P 时停止倒入 图 2 是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到 0.1cm)(参考数据:1.73,1.
33、41)【考点】解直角三角形的应用【分析】根据题意得出 AP,BP 的长,再利用三角形面积求法得出 NP 的长,进而得出容器中牛奶的高度【解答】解:过点 P 作 PNAB 于点 N,由题意可得:ABP=30,AB=8cm,则 AP=4cm,BP=ABcos30=4cm,NPAB=APBP,NP=2(cm),925.5(cm),答:容器中牛奶的高度为:5.5cm【点评】此题主要考查了解直角三角形以及三角形面积求法等知识,得出 PN 的长是解题关键23(10 分)(福建漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用 1200 元购进一批杨梅,很快售完;老板又用 2500 元购进第二批杨梅
34、,所购件数是第一批的 2 倍,但进价比第一批每件多了 5 元(1)第一批杨梅每件进价多少元?(2)老板以每件 150 元的价格销售第二批杨梅,售出 80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于 320 元,剩余的杨梅每件售价至少打几折?(利润=售价进价)【考点】分式方程的应用;一元一次不等式的应用【分析】(1)设第一批杨梅每件进价是 x 元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的 2 倍;(2)设剩余的杨梅每件售价 y 元,由利润=售价进价,根据第二批的销售利润不低于 320 元,可列不等式求解【解答】解:(1)设第一批杨梅每件进价
35、 x 元,则2=,解得 x=120经检验,x=120 是原方程的根答:第一批杨梅每件进价为 120 元;(2)设剩余的杨梅每件售价打 y 折则:15080%+150(180%)0.1y2500320,解得 y7答:剩余的杨梅每件售价至少打 7 折【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解24(12 分)(福建漳州)阅读材料:如图 1,在AOB 中,O=90,OA=OB,点 P 在 AB 边上,PEOA 于点 E,PFOB 于点 F,则 PE+PF=OA(此结论不必证明,可直接应用)(1)【理解与应用】如图 2,正方形
36、ABCD 的边长为 2,对角线 AC,BD 相交于点 O,点 P 在 AB 边上,PEOA 于点 E,PFOB 于点 F,则 PE+PF 的值为(2)【类比与推理】如图 3,矩形 ABCD 的对角线 AC,BD 相交于点 O,AB=4,AD=3,点 P 在 AB边上,PEOB 交 AC 于点 E,PFOA 交 BD 于点 F,求 PE+PF 的值;(3)【拓展与延伸】如图 4,O 的半径为 4,A,B,C,D 是O 上的四点,过点 C,D 的切线CH,DG 相交于点 M,点 P 在弦 AB 上,PEBC 交 AC 于点 E,PFAD 于点F,当ADG=BCH=30时,PE+PF 是否为定值?若
37、是,请求出这个定值;若不是,请说明理由【考点】圆的综合题;等边三角形的判定与性质;矩形的性质;正方形的性质;弦切角定理;相似三角形的判定与性质【专题】压轴题;探究型【分析】(1)易证:OA=OB,AOB=90,直接运用阅读材料中的结论即可解决问题(2)易证:OA=OB=OC=0D=,然后由条件 PEOB,PFAO 可证AEPAOB,BFPBOA,从而可得=1,进而求出 EP+FP=(3)易证:AD=BC=4仿照(2)中的解法即可求出 PE+PF=4,因而 PE+PF 是定值【解答】解:(1)如图 2,四边形 ABCD 是正方形,OA=OB=OC=OD,ABC=AOB=90AB=BC=2,AC=
38、2OA=OA=OB,AOB=90,PEOA,PFOB,PE+PF=OA=(2)如图 3,四边形 ABCD 是矩形,OA=OB=OC=OD,DAB=90AB=4,AD=3,BD=5OA=OB=OC=OD=PEOB,PFAO,AEPAOB,BFPBOA,=1+=1EP+FP=PE+PF 的值为(3)当ADG=BCH=30时,PE+PF 是定值理由:连接 OA、OB、OC、OD,如图 4DG 与O 相切,GDA=ABDADG=30,ABD=30AOD=2ABD=60OA=OD,AOD 是等边三角形AD=OA=4同理可得:BC=4PEBC,PFAD,AEPACB,BFPBDA,=1=1PE+PF=4当
39、ADG=BCH=30时,PE+PF=4【点评】本题考查了正方形的性质、矩形的性质、弦切角定理、相似三角形的判定与性质、等边三角形的判定与性质等知识,考查了类比联想的能力,由一定的综合性要求 PE+PF 的值,想到将相似所得的比式相加是解决本题的关键25(14 分)(福建漳州)已知抛物线 l:y=ax2+bx+c(a,b,c 均不为 0)的顶点为 M,与 y 轴的交点为 N,我们称以 N 为顶点,对称轴是 y 轴且过点 M 的抛物线为抛物线 l 的衍生抛物线,直线 MN 为抛物线 l 的衍生直线(1)如图,抛物线 y=x22x3 的衍生抛物线的解析式是y=x23,衍生直线的解析式是y=x3;(2
40、)若一条抛物线的衍生抛物线和衍生直线分别是 y=2x2+1 和 y=2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线 y=x22x3 的顶点为 M,与 y 轴交点为 N,将它的衍生直线 MN 先绕点 N 旋转到与 x 轴平行,再沿 y 轴向上平移 1 个单位得直线 n,P 是直线 n 上的动点,是否存在点 P,使POM 为直角三角形?若存在,求出所有点 P 的坐标;若不存在,请说明理由【考点】二次函数综合题【分析】(1)衍生抛物线顶点为原抛物线与 y 轴的交点,则可根据顶点设顶点式方程,由衍生抛物线过原抛物线的顶点则解析式易得,MN 解析式易得(2)已知衍生抛物线和衍生直线求原抛
41、物线思路正好与(1)相反,根据衍生抛物线与衍生直线的两交点分别为衍生抛物线与原抛物线的交点,则可推得原抛物线顶点式,再代入经过点,即得解析式(3)由 N(0,3),衍生直线 MN 绕点 N 旋转到与 x 轴平行得到 y=3,再向上平移 1 个单位即得直线 y=2,所以 P 点可设(x,2)在坐标系中使得POM 为直角三角形一般考虑勾股定理,对于坐标系中的两点,分别过点作平行于 x 轴、y 轴的直线,则可构成以两点间距离为斜边的直角三角形,且直角边长都为两点横纵坐标差的绝对值进而我们可以先算出三点所成三条线的平方,然后组合构成满足勾股定理的三种情况,易得 P 点坐标【解答】解:(1)抛物线 y=
42、x22x3 过(0,3),设其衍生抛物线为 y=ax23,y=x22x3=x22x+14=(x1)24,衍生抛物线为 y=ax23 过抛物线 y=x22x3 的顶点(1,4),4=a13,解得 a=1,衍生抛物线为 y=x23设衍生直线为 y=kx+b,y=kx+b 过(0,3),(1,4),衍生直线为 y=x3(2)衍生抛物线和衍生直线两交点分别为原抛物线与衍生抛物线的顶点,将 y=2x2+1 和 y=2x+1 联立,得,解得 或,衍生抛物线 y=2x2+1 的顶点为(0,1),原抛物线的顶点为(1,1)设原抛物线为 y=a(x1)21,y=a(x1)21 过(0,1),1=a(01)21,
43、解得 a=2,原抛物线为 y=2x24x+1(3)N(0,3),MN 绕点 N 旋转到与 x 轴平行后,解析式为 y=3,再沿 y 轴向上平移 1 个单位得的直线 n 解析式为 y=2设点 P 坐标为(x,2),O(0,0),M(1,4),OM2=(xMxO)2+(yOyM)2=1+16=17,OP2=(|xPxO|)2+(yOyP)2=x2+4,MP2=(|xPxM|)2+(yPyM)2=(x1)2+4=x22x+5当 OM2=OP2+MP2时,有 17=x2+4+x22x+5,解得 x=或 x=,即 P(,2)或 P(,2)当 OP2=OM2+MP2时,有 x2+4=17+x22x+5,解得 x=9,即 P(9,2)当 MP2=OP2+OM2时,有 x22x+5=x2+4+17,解得 x=8,即 P(8,2)综上所述,当 P 为(,2)或(,2)或(9,2)或(8,2)时,POM 为直角三角形【点评】本题考查了一次函数、二次函数图象及性质,勾股定理及利用其表示坐标系中两点距离的基础知识,特别注意的是“利用其表示坐标系中两点距离”是近几年考试的热点,学生需熟练运用