资源描述
2022-2023学年六上数学期末模拟试卷
一、选择题。(选择正确答案的序号填在括号内)
1.的分母加上27,要使分数大小不变,分子应( ).
A.加上27 B.乘3 C.乘4 D.加上9
2.下列方程中,x的值最大的是( )。
A. B. C. D.
3.车轮滚动一周,求所行的路程就是求车轮的( )。
A.直径 B.周长 C.面积 D.半径
4.一个等腰三角形的两条边分别是8厘米和4厘米,它的周长是( )
A.16厘米 B.20厘米 C.16厘米或20厘米
5.如下图,在一张长方形纸上画两个半径3厘米的圆,并沿虚线剪下含有圆的小长方形,剩下部分正好是一个正方形,这个正方形的边长是( )厘米。
A.12 B.24 C.36
6.乐乐一天的活动时间安排为:学习4小时,运动2小时,上网6小时,其他12小时。下列四幅图中,( )图准确地表示了这一结果。
A. B. C. D.
7.李军的座位记为(4,4),如果他往后挪三排,这时他的位置应记为( )。
A.(7, 4) B.(4, 7) C.(1, 1) D.(7,7)
8.下面几个式子中,选项( )是方程。
A.3+5=8 B.X-100=0 C.X+10>9
9.下列说法正确的是( )
A.彩票中奖的机会是1%,买100张一定能中奖。 B.从1、2、3、4、5这五个数字中任取一个数,取得奇数的可能性大。
C.可能性很小的事情在一次实验中一定不会发生。 D.一枚硬币,小明抛掷5次有4次正面向上,则抛掷一枚硬币正面向上的概率为0.8。
二、填空题。
10.如果大圆半径是小圆半径的3倍,那么小圆周长是大圆周长的_____,小圆面积是大圆面积的_____。
11.50807600读作________,它是一个________位数;其中“5”在________位上,表示________.中国是世界上人口最多的国家,约有十三亿八千二百七十一万人,横线上的数写作________,把这个数省略亿位后面的尾数后约是________.
12.在○里填上“>”,“<”或“=”.
○ ○ 0.65○ 3.14○
13.20以内6的倍数有(____________);30的所有质因数有(_________)。
14.比较大小:(________)。(填“>”“<”“=”)
15.40kg:0.4t 的最简整数比是(_____),比值(_____)。
16.下图中阴影部分的面积占整个图形的 。
17.9的倒数是(________);0.2的倒数是(________)(________)没有倒数 。
18.一项工程7天完成,3天完成它的,工作5天后,还剩这项工程的。
19.只列式,不计算。
学校进行1分钟跳绳测试,小明跳了150下,是小东跳的下数的,小丽跳的下数是小东的,小丽1分钟跳多少下?
列式:_____________
20.( )∶20==( )%=六折=( )(填小数)。
21.一件衣服按原价的八五折出售,是把(____)看作单位“1”,现价比原价降低(____)%.
22.乐乐把1000元存入银行,定期2年,年利率是2.25%,到期后,他应从银行取回(________)元。
23.一段长方体木材长2m,把它横截成三段后,表面积增加了4dm2,这段长方体木材原来的体积是(_____)dm1.
三、计算题。
24.直接写得数:
-= -= + =
1- = - = - =
25.解方程。
+x= 40%x+25%x=26 x÷2=
26.认真计算,能简算的要简算.
0.125×64×0.25 ×101-0.75
÷ ÷
四、按要求画图。
27.画出图中三角形AOB绕点O逆时针旋转90°后的图形。
28.(1)画出左图的对称图形.
(2)画出图中三角形ABC绕C点顺时针旋转90°后的图形.
五、解答题。
29.有一个面积为700平方米的圆形草坪,要为它安装自动旋转喷灌装置进行喷灌。现有射程为20米、15米、10米的三种装置,你认为选哪种比较合适?安装在什么位置?
30.一艘轮船从甲港开往乙港,去时逆水,每小时行20km,18小时到达。返回时顺水,速度增加了20%,多少小时才能返回甲港?(用比例解)
31.为开展阳光体育活动,坚持让中小学生“每天锻炼1小时”,调查组随机调查了600名学生,调查内容是“每天锻炼的时间”,所得数据制成了以下的扇形统计图和条形统计图。
(1)把扇形统计图中的括号和条形统计图补充完整。
(2)锻炼时间不超过1小时的人数与超过1小时的人数比为( ):( )。
32.有一个长方体,如图,(单位:厘米)现将它“切成”完全一样的三个长方体.
(1)共有 种切法.
(2)怎样切,使切成三块后的长方体的表面积的和比原来长方体的表面积增加得最多,算一算表面积最多增加了多少?
33.做三角形底边上的高,量一量底是( )厘米,高是( )厘米,计算三角形的面积.
34.水果店购进一批苹果,第一天售出,第二天比第一天多卖出,这批苹果共有1000千克,两天一共售出多少千克?
参考答案
一、选择题。(选择正确答案的序号填在括号内)
1、C
【分析】首先发现分母之间的变化,由分母9加上27,变为36,扩大了4倍,要使分数的大小相等,分母也应扩大4倍,由此通过计算就可以得出.
【详解】原分数分母是9,现在分数的分母是9+27=36,扩大4倍;
原分数分子是5,要使前后分数相等,分子也应扩大4倍,变为20,即20=5×4;
故选C.
2、A
【分析】根据等式的性质,分别计算出结果,再进行比较即可。
【详解】
解:4x-24=8
4x=32
x=8;
解:3x=8.7
x=2.9;
解:
x=0.9;
解:
x=;
8>2.9>0.9>;
故答案为:A
【点睛】
本题属于基础性题目,认真计算即可。
3、B
【分析】车轮滚动一周,车轮所走过的路程与车轮的周长相等,由此选择即可。
【详解】车轮滚动一周,求所行的路程就是求车轮的周长。
故答案为:B
【点睛】
本题考查圆的周长的应用。
4、B
【解析】试题分析:求等腰三角形的周长,就要确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为8厘米和4厘米,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
解:(1)若4厘米为腰长,10厘米为底边长,
由于4+4=8,两边之和不大于第三边,则三角形不存在;
(2)若8厘米为腰长,则符合三角形的两边之和大于第三边.
所以这个三角形的周长为8+8+4=20(厘米).
故选B.
点评:本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.
5、A
【分析】已知在裁剪后,剩下部分为正方形。因为正方形四条边都相等,即原长方形的宽就相当于正方形的边长。又因为原长方形的宽恰好够画两个半径为3厘米的圆。所以正方形的边长=原长方形的宽=两圆直径之和=3×2×2=12(厘米)。
【详解】3×2×2
=3×4
=12(厘米)
故答案为:A。
【点睛】
本题需要我们根据图示,运用有关正方形、长方形及圆的有关概念及特征来解答,同时也要结合一定的计算。
6、C
【详解】略
7、B
【详解】略
8、B
【解析】略
9、B
【详解】彩票中奖的机会是1%,买100张不一定能中奖,原题说法错误;3个奇数,2个偶数,取得奇数的可能性大,原题说法正确;可能性很小的事情在一次实验中也有可能会发生,原题说法错误;硬币有正反两个面,抛掷一枚硬币正面向上的概率为1÷2=0.5,原题说法错误。
故答案为:B
二、填空题。
10、
【分析】根据题干,设小圆的半径是1,则大圆的半径就是3,据此分别计算出它们的周长、面积即可解答问题。
【详解】小圆的半径是1,则大圆的半径就是3,
小圆周长是大圆周长的(2π×1)÷(2π×3)=;
小圆面积是大圆面积的:(π×12)÷(π×32)=;
答:小圆周长是大圆周长的,小圆面积是大圆面积的。
故答案为:、。
【点睛】
此类问题可以把小圆与大圆的半径分别用相应的数字或字母代替,然后利用圆的面积和周长公式分别表示出大圆与小圆的面积与周长进行解答。
11、五千零八十万七千六百 八 千万 5个千万 1382710000 14亿
【解析】略
12、>,<,=,<
【详解】略
13、6,12,18 2,3,5
【解析】略
14、<
【分析】本题是依据“被减数一定时,差越大,减数越小”的性质来解答的,故要先假设被减数为1,再分别求出1与两个分数的差,通过比较差的大小,来判断减数的大小。
【详解】1-=,1-=;
>;
所以,1->1-;
因此,<。
【点睛】
本题若是按常规通分比较大小的方法,最小公倍数会很大,计算起来也复杂些;但若是用作差法来比较,不仅减少了计算量,也更加准确。
15、1:10 0.1或
【详解】略
16、
【解析】略
17、 5 0
【解析】略
18、
【解析】略
19、150÷
【分析】将小东跳的下数看作单位“1”,用小明跳的下数÷对应分率=小东跳的下数,小东跳的下数×小丽跳的对应分率=小丽跳的下数,据此列出综合算式即可。
【详解】根据分析,列式为:150÷
【点睛】
关键是确定单位“1”,求部分用乘法,求整体用除法。
20、12;3;60;0.6
【分析】六折就是60%,把百分数化成小数去掉百分号,小数点向左移动两位即可,60%=0.6;把0.6化成分数是 ,化简得= ;把分数化成比的形式,分子相当于比的前项,分母相当于比的后项,结合比的性质得=3∶5=(3×4)∶(5×4)=12∶20,据此填空即可。
【详解】由分析,填空如下:
12∶20==60%=六折=0.6(填小数)。
【点睛】
此题考查折扣、分数、小数和比的互化。明确几折就是百分之几十。
21、原价 15
【解析】略
22、1045
【分析】根据利息=本金×利率×存期,先求出利息,再用利息+本金即可。
【详解】1000×2.25%×2+1000
=45+1000
=1045(元)
【点睛】
取款时,银行多支付的钱叫利息。
23、2
【解析】试题分析:把这个长方体平均锯成1段,需要锯2次,每锯一次就会多出2个长方体的横截面,由此可得锯成1段后表面积是增加了4个横截面的面积,由此可以求出横截面的面积是4÷4=1平方分米,再利用长方体的体积公式即可解答.
解:2米=2分米,
4÷4×2,
=1×2,
=2(立方分米);
答:这段长方体木材原来的体积是2立方分米.
故答案为2.
点评:理解利用长方体的切割方法得到切割后增加的表面积情况,是解决此类问题的关键.
三、计算题。
24、, ,1, ,0,
【详解】略
25、x=1.5;x=40;x=
【分析】(1)根据等式的性质,等式两边同时减去,再同时除以即可解出方程;
(2)先化简等式左边得65%x,再把等式两边同时除以65%即可;
(3)等式两边同时乘2,再同时除以即可解出方程。
【详解】+x=
解:+x-=-
x=
x÷=÷
x=1.5
40%x+25%x=26
解:65%x=26
65%x÷65%=26÷65%
x=40
x÷2=
解:x÷2×2=×2
x=
x÷=÷
x=
26、2,75,,3
【详解】略
四、按要求画图。
27、
【分析】根据旋转的特征,三角形AOB绕点O逆时针旋转90°,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的图形。
【详解】画出三角形AOB绕点O逆时针旋转90°后的图形,如图所示:
故答案为:。
【点睛】
本题考查旋转,解答本题的关键是掌握经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一组对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
28、(1)画出左图的对称图形(下图):
(2)画出图中三角形ABC绕C点顺时针旋转90°后的图形(下图):
【解析】(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左半图的关键对称点,依次连结即可.
(2)根据旋转的特征,三角形ABC绕点C顺时针旋转90°后,点C的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可画出旋转后的图形.
五、解答题。
29、选射程为15米的装置。安装在圆形草坪的圆心
【解析】20×20×3.14=1256(平方米) 15×15×3.14=706.5(平方米) 10×10×3.14=314(平方米)
30、15小时
【分析】总路程一定,速度和时间成反比例。根据“顺水的速度×时间=逆水的速度×时间”,列方程解答。
【详解】解:设x小时才能返回甲港。
20×(1+20%)x=20×18
24x=360
x=15
答:15小时才能返回甲港。
【点睛】
本题考查用比例解应用题,明确题目的比例关系是解题的关键。
31、(1)
(2)3;1
【详解】略
32、(1)1(2)2平方厘米
【解析】要把这个长方体切成三个完全一样的长方体,①24÷1=8,可以切长为12、宽为8、高为6的三个长方体;②12÷1=4,可以切成长为24宽为4高为6的三个长方体;③6÷1=2可以切成长为24宽为12高为2的三个长方体.第三种切法使切成三块后的长方体的表面积的和比原来长方体的表面积增加得最多,增加的是长为24宽为12的四个面的面积,由此可以解决问题.
【详解】(1)有三种切法,
①24÷1=8,可以切长为12、宽为8、高为6的三个长方体;
②12÷1=4,可以切成长为24宽为4高为6的三个长方体;
③6÷1=2可以切成长为24宽为12高为2的三个长方体.
故答案为1.
(2)第三种切法使切成三块后的长方体的表面积的和比原来长方体的表面积增加得最多,
增加的是长为24宽为12的四个面的面积:24×12×4=2.
答:表面积增加了2平方厘米.
33、
3;2;
面积:3×2÷2=3(平方厘米)
【详解】略
34、210千克
【详解】1000××(1+1+1/10)=210(千克)
展开阅读全文