1、第 37 卷第 4 期 高 校 化 学 工 程 学 报 No.4 Vol.37 2023 年 8 月 Journal of Chemical Engineering of Chinese Universities Aug.2023 文章编号:1003-9015(2023)04-0515-10 基于新型光催化材料的水处理膜研究进展 白薇薇,徐梦影,逯 祯,冯孝权,邹卫华,王 景,张亚涛(郑州大学 化工学院,河南 郑州 450001)摘 要:光催化水处理膜在实现分离要求的同时,可利用其光催化能力对膜表面污染物进行降解并抑制细菌生长,降低膜污染,在水体净化和废水处理中展现了独特优势。文章首先简要介绍
2、了光催化的基本机理,总结了不同新型光催化材料的结构和性能特点。然后,围绕光催化水处理膜的设计与开发,着重论述了石墨碳氮化物(g-C3N4)、碳量子点(CQDs)、层状双氢氧化物(LDHs)、金属碳/氮化物(MXenes)、金属有机骨架(MOFs)和共价有机骨架(COFs)基光催化水处理膜的应用及其水处理性能。最后,对光催化水处理膜存在的问题进行了深入分析,并对其未来发展进行了展望。关键词:膜分离;光催化;膜污染;水处理 中图分类号:TQ028.8 文献标志码:A DOI:10.3969/j.issn.1003-9015.2023.04.001 Research progress of wate
3、r treatment membranes based on photocatalytic materials BAI Weiwei,XU Mengying,LU Zhen,FENG Xiaoquan,ZOU Weihua,WANG Jing,ZHANG Yatao(School of Chemical Engineering,Zhengzhou University,Zhengzhou 450001,China)Abstract:Photocatalytic water treatment membranes can degrade pollutants on membrane surfac
4、e and inhibit bacteria growth while achieving separation performance,thus reduces membrane pollution.Therefore,these membranes show unique advantages in water purification and wastewater treatment.In this review,basic mechanism of photocatalytic application is introduced and the structure and perfor
5、mance of different new photocatalytic materials are summarized.Subsequently,considering the design and development of photocatalytic water treatment membranes,the application of g-C3N4,CQDs,LDHs,MXenes,MOFs and COFs based membranes and their water treatment performance are discussed.Finally,problems
6、 and future development of photocatalytic water treatment membrane are proposed.Key words:membrane separation;photocatalysis;membrane fouling;water treatment 1 前 言 近年来,随着工业的快速发展和人口的急剧增长,大量有毒有害污染物被排放到环境中,导致水污染问题日益严重1。为了解决上述问题,人们开发了多种水处理技术,如活性污泥法、吸附法、离子交换法、膜分离法、混凝和沉淀法等2。膜分离法具有高效、绿色、操作简便等特点,可以有效去除地下水、城
7、市和工业废水中的盐分、细菌和其他有机污染物(如染料、药物中间体等),是一种颇具前景的新型分离技术3。然而,膜材料在水处理过程中易被有机物污染,从而影响膜的渗透通量和使用寿命4。虽然物理清洗和化学清洗可在一定程度上恢复膜的通量,减弱膜污染的影响,但这些清洗手段常常需要额 收稿日期:2022-06-13;修订日期:2022-10-28。基金项目:国家自然科学基金(51973199)。作者简介:白薇薇(1998-),女,河南驻马店人,郑州大学硕士生。通信联系人:逯祯,E-mail: 引用本文:白薇薇,徐梦影,逯祯,冯孝权,邹卫华,王景,张亚涛.基于新型光催化材料的水处理膜研究进展 J.高校化学工程学
8、报,2023,37(4):515-524.Citation:BAI Weiwei,XU Mengying,LU Zhen,FENG Xiaoquan,ZOU Weihua,WANG Jing,ZHANG Yatao.Research progress of water treatment membranes based on photocatalytic materials J.Journal of Chemical Engineering of Chinese Universities,2023,37(4):515-524.516 高 校 化 学 工 程 学 报 2023年8月 外的药剂和能
9、耗,不仅会增加工艺成本,而且会缩短膜的使用周期,从而削弱膜分离技术的竞争力5。因此,开发抗污染膜材料一直是膜分离领域的前沿和热点。光催化是一种高效、可持续的高级氧化技术,在污水处理中具有极高的研究和应用价值6。耦合了光催化功能的抗污光催化膜近年来受到了广泛的关注和研究7。这种光催化水处理膜可以借助光催化剂在光照射下产生的活性自由基降解吸附在膜上的污染物,在实现分离的同时抑制污染物在膜表面的累积,减少孔隙堵塞,实现主动抗污。然而,大多数光催化水处理膜仅在紫外光照射下才表现出有限的光催化活性8。此外,常见的金属半导体光催化剂大多含有稀有金属,其制备工艺复杂,或太阳能转换效率低,实际应用效果不佳9-
10、11。因此,寻找高效、稳定、对可见光响应的光催化剂并采用合适的方式将其引入膜材料是光催化水处理膜领域研究的重点和难点。目前,具有优异物理化学性质和光催化能力的石墨碳氮化物(g-C3N4)12-13、碳量子点(CQDs)14-15、层状双氢氧化物(LDHs)16-17、金属碳/氮化物(MXenes)18-19以及金属有机骨架(MOFs)20-21和共价有机骨架(COFs)22-23等材料已受到光催化领域的广泛关注。综上,本综述首先介绍了光催化的机理,然后归类总结了上述 6 种新型光催化剂的性能特点,并重点论述了光催化水处理膜的制备策略和分离性能。基于光催化水处理膜广阔的应用前景,开发高效、稳定并
11、能实际应用的光催化水处理膜是未来发展的趋势。2 光催化技术的基本机理 自由基的强氧化还原能力是光催化技术的基础。在光照作用下,光催化剂产生活性自由基,这些活性自由基可与有机污染物之间进行一系列化学反应使其降解,达到水体净化的目的15-16,19,24。整个过程包含以下几个步骤:首先,当光催化剂吸收的能量(hv)高于本身的带隙能(Eg)时,价带中的电子(e)被激发跃迁到导带,留下了较为稳定的空穴(h+),如式(1)所示。然后,被激发的电子和空穴分别迁移到光催化剂的表面并引发一系列氧化还原反应。其中,电子将 O2还原成超氧自由基(O2)。而空穴由于具备较强的氧化能力,不仅可以直接氧化有机分子,还可
12、以与 H2O 反应形成羟基自由基(OH)。最终,在空穴、超氧自由基和羟基自由基 3种活性物质的共同作用下,有机污染物被分解为 H2O 和 CO2,完成光催化降解过程。需要注意的是,在电子空穴对迁移的过程中,一些电子和空穴会重新结合释放能量。如果在催化过程中,电子和空穴对复合率较高,会阻碍自由基的生成,从而降低催化效率。+Photocatalysteh-hv (1)此处简要介绍了光催化技术的基本机理,但是对于光催化膜来说,光催化过程受很多因素的影响,包括光催化剂的能带结构、污染物的类型和光催化剂在膜中的存在形式等。因此,对于不同反应体系应进行具体的光催化机理分析。3 光催化水处理膜的研究进展 光
13、催化膜发展的关键是光催化材料的开发。近年来,一些具有优异光催化能力、良好稳定性和环境友好的新型光催化剂,如 g-C3N4、CQDs、LDHs、MXenes 以及 MOFs 和 COFs,在光催化水处理膜的设计与制备中受到了广泛的关注和研究。表 1 列出了这 6 种材料的基本特性,如结构、禁带宽度、光学性质和优势。其中,g-C3N4、LDHs 和 MXenes 具有独特的二维结构:g-C3N4带隙窄、耐光腐蚀,作为无金属半导体催化剂被广泛研究13;低成本 LDHs 和高导电 MXenes 光谱吸收宽、带隙可调、比表面积高,不仅可以单独发挥光催化功能,还可以与半导体催化剂结合协助其发展16,25。
14、零维 CQDs 具有上转换光H2O Pollutants CO2+H2O e-O2 O2 h+Pollutants CO2+H2O OH hv Eg 图 1 光催化过程的机理图 Fig.1 Schematic diagram of photocatalytic mechanism 第 37 卷第 4 期 白薇薇等:基于新型光催化材料的水处理膜研究进展 517 表 1 新型光催化材料的结构与性能特点 Table 1 Structure and properties of novel photocatalytic materials Photocatalysis Structure Band ga
15、p Optical properties Unique selling points g-C3N4 Amorphous or crystalline;Layered structure About 2.7 eV UV-visible spectral response Nontoxic;Resistant to photocorrosion;Easy synthesis CQDs Amorphous or crystalline;Typically less than 10 nm in size Size-dependent Wide light absorption range;Up-con
16、verted photoluminescence;UV-visible spectral response Biocompatibility;High electron transfer capability;Easy functionalization LDHs Crystalline;Layered structure 2.2-3.2 eV Tunable optical band gap;UV-visible spectral response;Wide light absorption range Low costs;High chemical stability;Large surf
17、ace area MXenes Crystalline;Layered structure 0.04-3.49 eV Tunable optical band gap;UV-visible spectral response;Wide light absorption range Hydrophilicity;High electronic conductivity;Large surface area MOFs Crystalline;Hybrid porous structure 1.0-5.5 eV Strong light capability;UV-visible spectral
18、response;Tunable optical band gap High porosity;Adjustable structure;Large surface area COFs Crystalline;Organic porous structure 1.3-2.9 eV Strong light capability;UV-visible spectral response;Tunable optical band gap High porosity;Strong thermal/chemical stability;Large surface area 致发光特性,可作为光谱转换器
19、提高紫外响应半导体催化剂的太阳能吸收率26。MOFs 和 COFs 具有多孔有机结构,通过分子水平的设计可定制不同带隙和孔径的光催化剂,在催化领域具有显著的竞争力20,22。这些材料都表现出可见光响应的光学特性,为制备性能优异的光催化水处理膜拓宽了道路。根据制备方法,可将光催化水处理膜分为混合基质型和表面负载型 2 类。混合基质光催化水处理膜是将催化剂掺杂在聚合物基质中制备的,这种膜的制备过程较为简单且能够有效避免催化剂的脱落。表面负载型光催化水处理膜通常是通过表面接枝、自组装、真空抽滤和原位生长等方法将光催化剂负载在基膜表面制备的,往往具有较大的光催化面积。本节从不同种类的光催化剂出发,总结
20、并分析了不同光催化水处理膜的发展近况。3.1 基于 g-C3N4的光催化水处理膜 g-C3N4是一种可见光响应的多孔片层材料,其多孔的特性能够增强水处理膜的分子筛分能力,降低传质阻力,在光催化水处理膜的制备上具有独特的优势12。通常,g-C3N4基光催化水处理膜由相转化或接枝、真空抽滤等表面负载法制备。Yang 等27将介孔石墨氮化碳与聚偏二氟乙烯(PVDF)铸膜液进行物理共混,通过相转化法制备了光催化水处理膜,增加催化剂的含量可提高膜的亲水性和防污性。即使在太阳光照下,光催化膜对抗生素头孢噻肟(CFX)的降解率也达到了 97%以上,在实际废水处理中表现出巨大的潜力。为了进一步提高光催化膜的抗
21、菌活性和光催化性能,可使用具有抗菌活性的银纳米粒子(Ag NPs)对 g-C3N4进行修饰,制备同时具有抗菌活性和光催化降解功能的 Ag/g-C3N4复合催化剂。Zhang 等28将修饰后的 Ag/g-C3N4催化剂引入聚醚砜(PES)中,通过相转化法制备了 Ag/g-C3N4/PES 超滤膜。制备的复合膜在可见光照射下具有优异的抗菌、光催化降解染料和防污性能。使用常规共混改性法时,催化剂与聚合物基质虽然具有较高的结合能力,但可能会存在催化剂分布不均、与基质不相容,催化剂不能直接接触光照等问题,从而降低光催化水处理膜的分离性能和催化性能。为了克服这些问题,Li 等29采用磁诱导冷冻铸造的方法制
22、备具有大孔结构的高效 Fe3O4/g-C3N4/PVDF 膜(FCMs)。磁性 Fe3O4/g-C3N4复合催化剂在磁场作用下可定向、高暴露于膜表面,使得膜表面具备更多的光催化活性位点,并形成利于光穿透的有序网状大孔结构,从而提高 FCMs 的可见光利用率、水通量和稳定性。除此之外,也可以对膜表面进行化学改性,利用特定基团与 g-C3N4形成共价键实现催化剂的稳定负载。Kolesnyk 等30利用 g-C3N4与碳酸盐活化的 PVDF 膜表面形成氨基从而实现催化剂的固定。Chi 等31518 高 校 化 学 工 程 学 报 2023年8月 在聚四氟乙烯(PTFE)超滤膜上通过等离子体诱导接枝聚
23、丙烯酸(PAA),利用 PAA 层提供的羧基与 Ti4+的配位作用实现 g-C3N4/TiO2催化剂的负载。其中,由 g-C3N4和 TiO2结合制备的异质结有效扩大了 TiO2的可见光吸收范围,提高了光生电子与空穴的分离效率,增强了光催化降解的能力。在实际测试过程中,该膜表现出较高的水通量、抗污性和光催化自清洁能力。相较于基质改性,表面改性法制备的光催化水处理膜在实际应用中可能会存在催化剂脱落的问题。为了解决上述问题,Huang 等32在 g-C3N4/PVDF 膜表面加入聚乙二醇(PEG)与戊二醛(GA)作为交联剂,在提高 PVDF 膜自清洁能力的同时加强了催化剂的稳定性。此外,也有研究人
24、员将海藻酸钠(SA)作为黏合剂,实现 g-C3N4在 PVDF 膜表面的稳定负载33。本课题组利用聚乙烯醇(PVA)与 GA 的缩合反应,在g-C3N4修饰的聚丙烯腈(PAN)膜表面上形成稳定的涂层,借以改善催化剂与基膜结合性差的问题4。综上所述,进一步提高光催化剂的性能和稳定性是未来基于 g-C3N4的光催化水处理膜应用的关键。3.2 基于CQDs的光催化水处理膜 CQDs是一种新兴的零维碳材料34,其独特的结构和丰富的表面官能团能够有效提高膜表面的亲水性和渗透性。CQDs基光催化水处理膜常通过表面接枝法制备。利用 CQDs 表面官能团与 Ti4+的配位作用,Xie 等35将制备好的 TiO
25、2膜浸入氮掺杂的 CQDs(NCQDs)悬浮液中,制备了 NCQDs/TiO2复合膜。在氮掺杂的作用下,复合膜表现出优异的光催化性能。这是由于掺杂的杂原子降低了 CQDs 的功函数36,增大与 TiO2的导带差值,加速电子空穴对的分离,从而增强复合膜中 NCQDs/TiO2光催化剂的光吸收和降解能力。除了光催化降解,CQDs 还被证实具有光诱导灭菌功能37。基于此,Chen 等38利用聚多巴胺(PDA)与 CQDs 表面羧基的缩合反应,将被具有抗菌活性的金纳米颗粒(Au NPs)修饰的 CQDs 成功固定在经 PDA 改性的聚砜(PSF)膜上。通过 CQDs 和 Au NPs 的协同作用,提高
26、了 PSF 膜的抗污染能力。并且,制备的 CQDs/Au/PSF 膜对大肠杆菌表现出优异的抗菌活性,其灭菌率达到了 90.2%。CQDs 基催化剂被负载在膜表面时会与有机污染物直接接触,易导致催化剂孔隙堵塞从而引起催化剂失活。为了改善这个问题,Shao 等39利用 PDA 与 CQDs 的相互作用,在 PDA-CQDs 修饰的 PES 膜表面构建了一层聚酰胺层。这种方法在改善孔隙堵塞的同时避免了 CQDs 的脱落,延长了 CQDs 光催化膜的使用寿命。在可见光下,通过降解膜表面的有机污染物,CQDs 提高了 PES 膜的抗污染能力。此外,将催化剂与聚合物基质共混也可以改善催化剂失活的问题。Zh
27、ang 等40将 CQDs 与 PES 铸膜液混合后,在直流电场成膜装置的辅助下,通过相转化法制备了 CQDs/PES 膜。在电场作用下,CQDs 均匀分布在膜基质中并高暴露于膜表面,不仅增强了 CQDs/PES 膜的抗污能力,还提高了水通量。3.3 基于LDHs的光催化水处理膜 LDHs是一种二维层状无机材料,具有制备工艺简单、化学稳定性高等优势,被认为是理想的可见光响应型光催化剂41。目前,LDHs基光催化水处理膜多通过表面自组装或相转化法制备。Mutharasi 等42将 ZnAl-LDH 作为填料,通过共混的方法分别制备了 ZnAl-LDH/PEI 混合基质超滤膜和 ZnAl-LDH/
28、PEI 聚酰胺(PA)纳滤膜,提高了聚乙烯亚胺(PEI)膜的水通量和抗污染能力。Zong 等43利用PDA 上的羧基与金属离子的螯合作用,通过原位生长的方法将 NiAlFe-LDH 负载在 PDA 修饰的 PVDF膜上,制备了能够高效分离油水混合物的 NiAlFe-LDH/PDA/PVDF 膜。其中,NiAlFe-LDH 不仅显著改善了膜表面的亲水性,而且在紫外光的照射下能够有效降解四环素,表现出优异的光催化活性。为了处理同时含有贵金属离子和染料分子的混合废水,Wang 等44在导电布上制备了掺杂不同金属离子(Ni、Al、Fe)的 LDHs 膜,并探究了其分离机理。其中,混合废水中的银离子被
29、LDHs 膜还原后沉积在膜表面,银纳米颗粒作为电子陷阱,降低了光催化剂空穴电子对的复合率,促进了 LDHs 膜对甲基橙(MO)的光催化活性。结果表明,Fe 掺杂的 LDHs 膜表现出最佳的可见光催化性能。为了进一步探究 LDHs 对重金属离子和有机化合物的光诱导还原能力和降解能力,Wang 等45对掺杂不同重金属离子(Ag+、Pb2+、Cu2+)和MO 的混合废水进行了测试。结果表明,共存金属离子的费米能级越高,LDHs 膜对混合液中 MO 的降第 37 卷第 4 期 白薇薇等:基于新型光催化材料的水处理膜研究进展 519 解效率越高,为去除重金属离子和有机污染物提供了新的思路。为了进一步提高
30、 LDHs 的催化活性,Zhao 等46制备了 ZnWO4和 NiAl-LDH 异质结,并将其通过真空抽滤法负载在 PVDF 膜上。在 ZnWO4的协同作用下,ZnWO4/NiAl-LDH 复合材料能够高效分离光生电子和空穴,并利用 LDHs 层间存在的水分子和游离的氢氧根离子加速水分子氧化生成羟基自由基,从而进一步提高催化效率。此外,研究者们通常将导电性好的碳材料或导电聚合物,例如氧化石墨烯(GO)、碳纳米管(CNT)、聚吡啶(Ppy)等与 LDHs 结合起来,通过提高 LDHs 的导电性进而提高其光催化性能47-49。Li 等50通过静电纺丝和水热法成功制备了包覆 FeCu-LDH/GO
31、催化剂的光催化自清洁 PAN/PEI 纳米纤维膜。在可见光照射下,纳米纤维膜表现出较高的抗污染能力,经光催化降解后的通量回收率(FRR)高达96.3%。Liu 等51通过多巴胺修饰法制备了 LDHsg-C3N4PDA 复合光催化剂,再将其通过真空抽滤法负载到 PVDF 基膜表面。在可见光的照射下,该复合膜能够在短时间内实现连续的染料分离降解,表现出优异的光催化自清洁功能。3.4 基于MXenes的光催化水处理膜 MXenes是一类具有单原子厚度、高强度和优异亲水性的片层光催化剂,常将其与半导体催化剂结合52。在提高光催化性能的同时,半导体催化剂也可以作为填料调控MXenes层间通道,从而提高M
32、Xenes基光催化水处理膜的分离性能。MXenes基光催化水处理膜通常由自组装法制备而成。Lin 等53采用氮掺杂的 Bi2O2CO3催化剂,将其与 MXenes 混合抽滤到 PES 基膜的表面,制备具有高水通量和强自清洁能力的光催化复合膜。Cheng 等54将催化剂 BiOCl-PPy 与 MXenes 共混,制备的BiOCl-PPyMXenes/PES 光催化膜对染料分子和四环素都表现出较高的分离和降解能力。Hu 等55将壳聚糖/单宁酸水凝胶涂层组装在 MXenes 膜表面,利用羟基与金属的配位作用,促进了-FeOOH 光催化剂的原位矿化,制备了 MXenes/PVDFCS/TA-FeOO
33、H 膜。其中,具有亲水性分级微纳米结构的-FeOOH不仅增强了 MXenes 膜的亲水性,还提高了其光催化自清洁的能力。为了进一步提高 MXenes 膜的渗透性能,该课题组将 PVDF 支撑层改为聚芳醚腈(PEN)纳米纤维支撑层,将 PDA 和 PEI 改性后的 TiO2纳米粒子固定在 PEN 支撑层上,制备了 MXenesTiO2/PEN 复合膜56。与相转化法制备的 PVDF 膜相比,由静电纺丝法制备的 PEN 纳米纤维膜具有较大的孔隙率和相互连接的孔结构,能够提供更多的水通道,从而降低了传质阻力。掺杂的 TiO2催化剂增强了复合膜的光催化活性,在可见光下对各种染料都表现出优异的光催化降解
34、能力,表明 MXenes 基水处理膜在协同处理水包油乳液和染料废水方面的广阔前景。除了对 TiO2进行改性,有研究发现 MXenes 结构中的 Ti 元素可以通过氧化过程在原位转化为 TiO2,从而实现在MXenes膜上的高效负载57-58。Huang等59采用水热氧化法制备了MXenesTiO2复合催化剂,然后将其分散于 PES 铸膜液中,制备 MXenesTiO2/PES 复合膜。在紫外光照射下,该复合膜具有良好的自清洁能力,对牛血清白蛋白(BSA)、海藻酸钠(SA)、腐殖酸(HA)和酵母(YE)溶液的通量回收率分别为 80.2%、100%、100%和 99.56%。利用 MXenes 优
35、异的光热转换和光催化降解的特性,Zhang 等60制备了一种具有催化降解功能的MXenes 光热蒸发水凝胶膜。在太阳能驱动下膜的染料的光催化降解效率为 90.5%,水分蒸发量为 1.82 kgm2h1,实现了高效的淡水产出。利用 CN 和 MXenes 的协同作用,Ding 等61制备了一种 CNMXenes光催化杂化膜,提高了 MXenes 对太阳能的转换效率,进而增强了光热转换能力。在 1 kWm2辐照下,杂化膜的水分蒸发量高达 2.30 kgm2h1,蒸气转换效率为 98.9%,并且对染料罗丹明 B、结晶紫和 MO都表现出较高的光催化降解能力。3.5 基于MOFs的光催化水处理膜 MOF
36、s 是一类由配位键连接的无机有机杂化多孔材料,具有可调的孔径结构和高比表面积,可作为新型光催化剂来替代传统的半导体光催化剂62。目前,MOFs 基光催化水处理膜通常由 MOFs 原位生长法或将其作为填料通过相转化法制备。2007年,Alvaro等63使用MOF-5作为催化剂在紫外光照射下对废水中的苯酚进行降解,证明了MOFs作为光催化剂在水处理领域中的潜力。在膜分离领域中,Huang 等64制备了具有光催化功能的520 高 校 化 学 工 程 学 报 2023年8月 MOF(NH2-MIL-125)纳米纤维膜用于吸附并降解废水中的染料。Du 等65在-Al2O3基底上通过原位生长法制备了 MO
37、F(UiO-66-NH2(Zr/Hf)膜,在模拟和真实光照条件下,Zr/Hf 膜都表现出良好的光催化 Cr(VI)还原性能,即使在 20 次循环测试后,仍有 94.1%的 Cr(VI)被还原。本课题组开发了多种 MOF 基光催化自清洁膜,并将其用于染料和盐的分离66-68。通过相转化法66,将 MIL-125(Ti)与 PVDF 共混制备了混合基质光催化自清洁膜;通过真空抽滤辅助自组装法68,将 CuTz-1 与 GO 共混后负载在基膜表面,并利用PVA 和 GA 的交联反应,制备了高稳定性的 CuTz-1/GOPAN 膜;通过界面聚合(IP)法67,将 Zr-porphyrin MOF 嵌入
38、 PA 层中,开发了具有增强分离性能的自清洁 PA 膜。这些光催化膜材料不仅具有较强的自清洁能力和抗菌能力,还拥有优异的染料/盐分离性能,在处理含盐染料废水方面发挥着巨大的应用潜力。大多数 MOFs 光催化剂面临着光生电子空穴对复合率高和稳定性不佳等问题69-70。为了改善这些问题并获得更优异的性能,许多研究人员通过对纯 MOFs 进行修饰,包括修饰连接剂或金属中心、掺杂金属纳米粒子(NPs)、固定聚氧金属酸盐(POM)、与半导体和导电材料结合等,从而构建功能化 MOFs71-75。Chen 等71将 Pt NPs 引入 MOFs 前驱体溶液中,制备了高金属负载量(质量分数为 16%)的 Pt
39、UiO-66-NH2光催化分离膜。其中,Pt NPs 作为电子受体,降低了 MOFs 光生电子空穴对的复合率,进而增强了 MOFs的光催化性能。Li 等72利用 MOFs 的空腔结构,将多金属氧酸盐 PW12(POM)整合到 MOFs 的孔内,解决了 POM 活性位点暴露度低和其高水溶性导致的可重用性差的问题,并通过原位生长制备了PAA-PVA/PW12UiO-66 纳米纤维膜。Wang 等76制备了 MOF-2 和 g-C3N4的异质结,并通过真空辅助自组装工艺制备了光催化分离膜。其中,g-C3N4的引入在调节二维 MOFs 层间距的同时拓宽了 MOFs 催化剂的光吸收范围,促进了层间纳米流
40、与自由基的充分接触,进一步提高了催化效率。该分离膜从物理分离和光催化降解两方面显著提高了对农业污染物(阿特拉津(ATZ),四环素(TC),磺胺二甲嘧啶(SMT),磺胺甲恶唑(SMX)的去除效果,证明了这种异质结结构具有改善光催化降解和实现高效分离的双重优势,为 MOFs 在光催化水处理膜中的发展拓宽了道路。3.6 基于 COFs 的光催化水处理膜 COFs 是一类由强共价键连接的多孔有机聚合物,可从分子水平上通过结构设计进而调控带隙77,优异的光学/化学性质和可调的孔隙尺寸使其在光催化膜分离领域具有广阔的前景。COFs 基光催化水处理膜可通过原位生长或 COFs 纳米片自组装制备而成。目前,C
41、OFs 基光催化材料的研究已经取得了显著进展,包括光催化析氢、产氧、光还原 CO2等78。在光催化膜分离领域,Xue 等79通过溶剂热法在碳纳米管膜上原位生长 COF(TpBD),制备了 COF/CNT膜。其中,碳纳米管的光热效应加速了 COF 的光降解过程,而均匀的 COF 层增强了 CNT 膜的力学性能。通过碳纳米管和 COF 之间的正相互作用,复合膜对染料分子铬蓝黑 R(MB17)表现出优异的光催化降解能力。Li 等80将 CdS 量子点原位锚定在 CTF-1 纳米片上,制备了 CdS/CTF-1 复合膜。CdS/CTF-1 形成的异质结结构不仅促进了复合催化剂光生电子空穴的传输,也有效
42、克服了 CdS 量子点光生电子空穴易重组的缺点,使 CdS/CTF-1 复合膜表现出优异的光催化自清洁和抗菌功能。在可见光照射下,该复合膜可恢复 95%以上的渗透性。然而,目前大多数关于 COFs 光催化的研究都只停留在具有不溶性和不可加工性的 COFs 粉末上22,COFs 光催化剂降解污染物的研究还处于起步阶段,关于 COFs 光催化水处理膜的研究少之又少。后续应进一步考虑降低成本、提高效益的制备策略,并注重 COFs 光催化反应机理的研究,从而扩大其在光催化水处理膜中的实际应用。4 结 论 综述首先简要介绍了光催化技术的基本机理,其次整理了 g-C3N4、CQDs、LDHs、MXenes
43、、MOFs和 COFs 这 6 种新型光催化材料的性能特点,然后重点梳理了基于上述材料的光催化水处理膜的研究现状。光催化水处理膜具备分离和催化两种功能,能有效解决膜在实际应用中面临的污染问题。此外,具有可见光响应和优异理化性质的新型光催化材料和后修饰方法的成功开发为制备适应复杂体系的光催化第 37 卷第 4 期 白薇薇等:基于新型光催化材料的水处理膜研究进展 521 水处理膜提供了新的途径。为了使催化剂能最大限度的在膜中发挥其优势,研究人员已开发了多种光催化剂负载的新方法,在提高催化剂的光吸收面积、均匀分布和稳定性方面取得了明显进步。基于广阔的应用前景,目前光催化水处理膜被广泛应用于印染废水和
44、药物废水中染料、抗生素的降解,矿物废水中金属离子的还原81、含油废水中膜表面油污的降解82-83等。虽然基于新型光催化材料水处理膜具有良好的发展前景,但在实际制备和应用过程中仍面临挑战。首先,光催化水处理膜的长期稳定性数据缺乏,需要进一步研究。其次,光催化水处理膜的实际应用离不开相应的生产设备,但目前使用的设备尚不能用于工业生产。综上,提高光催化水处理膜的稳定性、制备能够实现光催化水处理的膜设备仍然是今后研究的热点。参考文献:1 GHALAMCHI L,ABER S,VATANPOUR V,et al.Development of an antibacterial and visible ph
45、otocatalytic nanocomposite microfiltration membrane incorporated by Ag3PO4/CuZnAl NLDH J.Separation and Purification Technology,2019,226:218-231.2 SHI Y,HUANG J,ZENG G,et al.Photocatalytic membrane in water purification:Is it stepping closer to be driven by visible light?J.Journal of Membrane Scienc
46、e,2019,584:364-392.3 高成涛,蔡龙,董福平,等.纤维素基分离膜材料的应用研究进展 J.高校化学工程学报,2019,33(5):1037-1047.GAO C T,CAI L,DONG F P,et al.Research progress on application of cellulose-based separation membrane materials J.Journal of Chemical Engineering of Chinese Universities,2019,33(5):1037-1047.4 LI R,REN Y,ZHAO P,et al.G
47、raphitic carbon nitride(g-C3N4)nanosheets functionalized composite membrane with self-cleaning and antibacterial performance J.Journal of Hazardous Materials,2019,365:606-614.5 ZHANG Q,QUAN X,WANG H,et al.Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nan
48、otube array for enhanced water treatment J.Scientific Reports,2017,7(1):3128.6 LI J,LV C,SONG J,et al.Superwetting Ag/-Fe2O3 anchored mesh with enhanced photocatalytic and antibacterial activities for efficient water purification J.Green Energy&Environment,2022.7 MENDES-FELIPE C,VELOSO-FERNNDEZ A,VI
49、LAS-VILELA J L,et al.Hybrid organicinorganic membranes for photocatalytic water remediation J.Catalysts,2022,12(2):180.8 WANG Y,TORRES J A,SHVIRO M,et al.Photocatalytic materials applications for sustainable agriculture J.Progress in Materials Science,2022,130:100965.9 DONG H,XIAO M,YU S,et al.Insig
50、ht into the activity and stability of RhxP nano-species supported on g-C3N4 for photocatalytic H2 production J.ACS Catalysis,2020,10(1):458-462.10 YU J,SEO S,LUO Y,et al.Efficient and stable solar hydrogen generation of hydrophilic rhenium-disulfide-based photocatalysts via chemically controlled cha