资源描述
分值:150分 考试时间:120分钟
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
一、选择题(共12小题,每小题5分,共60分)
1.若全集,集合,,则 ( )
A.{2} B.{1,2} C.{1,2,4} D.{1,3,4,5}
2.下列函数中,定义域为的函数是 ( )
A. B. C. D.
3.设集合,,则为 ( )
A. B.
C. D.
4.设集合,那么集合的真子集个数是 ( )
A.3 B.4 C.7 D.8
5.函数,则 ( )
A.1 B.2 C.3 D.4
6.已知函数,则的值等于 ( )
A. B. C. D. 0
7.定义在上的函数对任意两个不相等实数,总有成立,则必有( )
A.在上是增函数 B.在上是减函数
C.函数是先增加后减少 D.函数是先减少后增加
8.已知函数的定义域是[-2,3],则的定义域是 ( )
A. [-1,4] B. C.[-5,5] D.[-3,7]
9.下列各组函数中,表示同一函数的是 ( )
A. B.
C. D.
10.已知函数f(x)为奇函数,且当x>0时, f(x) =x2+,则f(-1)= ( )
A.-2 B.0 C.1 D.2
11.已知函数,是上的减函数,则的取值范围是( )
A. B. C. D.
12.设函数 (x∈R)为奇函数,,,则 ( )
A.0 B.1 C. D.5
二、填空题(共4小题,每小题5分,共20分)
13.函数的定义域为 .
14.若为偶函数,则实数__ _____.
15.已知函数,则函数的值域为 .
16.若X是一个集合,是一个以X的某些子集为元素的集合,且满足:①X属于,属于;
②中任意多个元素的并集属于;③中任意多个元素的交集属于.则称是集合X上的一个拓扑.已知集合X =,对于下面给出的四个集合:
①; ②;
③; ④.
其中是集合X上的拓扑的集合的序号是 .
三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤))
17.(本小题10分)已知集合,,
,,求的值.
18.(本小题10分)求下列各题中的函数f(x)的解析式.
(1) 已知函数y=f(x)满足2f(x)+f=2x,x∈R且x≠0,求f(x);
(2) 已知f(x)是二次函数,且满足f(0)=1,f(x+1)=f(x)+2x,求f(x).
19.(本小题12分)集合.
(1)若AB=,求a的取值范围.
(2)若AB=,求a的取值范围.
20.(本小题12分)已知实数a≠0,函数f(x)=
(1) 若a=-3,求f(10),f(f(10))的值;
(2) 若f(1-a)=f(1+a),求a的值.
21.(本小题12分)已知函数.
(1)作出函数的图像,并根据图像写出函数的单调区间;
(2)求函数当时的最大值与最小值.
22.(本小题14分)设函数的定义域为R,对任意实数x、y都有,
且.
(1)证明: 函数为奇函数;
(2)证明:函数在上为减函数.
(3)求在区间[-9,9]上的最大值与最小值.
郎溪中学2015-2016学年第一学期高一第一次月考
数学试卷--参考答案
1.C
2.A
3.C
4.A
5.B
6.C
7.A.
8.A
9.C
10.A
11.B
12.C
13.
14..
15.
16.②④
17..
18.(1)f(x)=x-(2)f(x)=x2-x+1.
19.(1)(2)
20.(1)-11(2)-
21.(Ⅰ)在区间,上单调递减,在区间,上单调递增。
(Ⅱ) 最小值最大值
22.(1) 证明略(2) 证明略
(3)f(x)在区间[-9,9]上的最大值为12,最小值为-12.
展开阅读全文