资源描述
学科 教师姓名 授课班级
教学内容
13.2用坐标表示轴对称
计划课时
1
教材分析
掌握在平面直角坐标系中,关于x轴和y轴对称点的坐标特点。
学情分析
能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
教学策略选择与设计
教学资源与工具设计
教学目标
知识与技能
过程与方法
能在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
情感态度与价值观
能运用坐标中的轴对称特点解决简单的问题。
教学
重点
在平面直角坐标系中画出一些简单的关于x轴和y轴的对称图形。
教学
难点
能运用坐标中的轴对称特点解决简单的问题。
教学
准备
教学过程
设计意图
预习
检查
预习新知P69-P70
1、如图,在平面直角坐标系中,
1)分别写出点A、B、C的坐标。
2)在坐标系中标出点A、B、C关于x轴的对称点
A1 、 B1、C1、。
3)写出A1 、 B1、C1、的坐标。
4)观察每对对称点的坐标,你发现了什么规律?
5)再找几个点,分别作出它们关于x轴的对称点,
检验一下你发现的规律。
由此可以得到:
导入
新课
在平面直角坐标系中,关于x轴对称的点横坐标_____,,纵坐标_________________。
点(x,y)关于x轴的对称点的坐标为__________.
2、如上图,在平面直角坐标系中,
1)在坐标系中标出点A、B、C关于关于y轴的对称点A2、B2、C2。
2)写出A2、B2、C2的坐标。
4)观察每对对称点的坐标,你发现了什么规律?
5)再找几个点,分别作出它们关于y轴的对称点,检验一下你发现的规律。
由此可以得到:
在平面直角坐标系中,关于y轴对称的点横坐标_____,,纵坐标_________________。
点(x,y)关于y轴的对称点的坐标为__________.
新授
3、完成下表.
已知点
(2,-3)
(-1,2)
(-6,-5)
(0,-1.6)
(4,0)
关于x轴的对称点
关于y轴的对称点
4、点(-1,3)与点(-1,—3)关于_________对称;
点(2,—4)与点(-2,—4)关于_________对称;
5、已知△ABC的三个顶点的坐标分别为A(-3,5),B(- 4,1),C(-1,3),作出△ABC关于y轴对称的图形。
6、课本P70练习题1、2
二、课堂展示
例1、已知点P(2a+b,-3a)与点P’(8,b+2).
若点p与点p’关于x轴对称,则a=_____ b=_______.
若点p与点p’关于y轴对称,则a=_____ b=_______.
例2、平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).
(1)试在平面直角坐标系中,标出A、B、C三点;
(2)求△ABC的面积.
(3)若与△ABC关于x轴对称,写出、、的坐标.
1、快速口答
点(3,6)、(-7,9)关于x轴的对称点分别是什么?
点(-3,-5)、(0,10)关于y轴的对称点分别是什么?
2、根据下列点的坐标的变化,判断它们进
行了怎样的变换:
⑴ (-1,3) (-1,-3) ⑵ (-5,-4) (-5,4)
⑶ (3,4) (-3,4) ⑷ (1,0) (-1,0)
3、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_____, b =_____.
4、课本P70习题2、3
5、已知点(x,4-y)与点(1-y,2x)关于y轴对称,则xy= ————————。
6、课本P72练习题5
7、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④若A、B之间的距离为4,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
8、已知A(-1,-2)和B(1,3),将点A向______平移________个单位长度后得到的点与点B关于y轴对称.
小结
在平面直角坐标系中,关于x轴对称的点横坐标_____,,纵坐标_________________。
点(x,y)关于x轴的对称点的坐标为__________.
在平面直角坐标系中,关于y轴对称的点横坐标_____,,纵坐标_________________。
点(x,y)关于y轴的对称点的坐标为__________.
作业
布置
板书
设计
在平面直角坐标系中,关于x轴对称的点横坐标_____,,纵坐标_________________。
点(x,y)关于x轴的对称点的坐标为__________.
在平面直角坐标系中,关于y轴对称的点横坐标_____,,纵坐标_________________。
点(x,y)关于y轴的对称点的坐标为__________.
课堂
评价
反馈
设计
教学
反思
4
展开阅读全文