1、Artificial Intelligence and Robotics Research 人工智能与机器人研究人工智能与机器人研究,2023,12(3),236-245 Published Online August 2023 in Hans.https:/www.hanspub.org/journal/airr https:/doi.org/10.12677/airr.2023.123027 文章引用文章引用:时天祥,王先帅,罗孙梅,肖金平,张泳.基于支持向量机分类算法的齿轮箱故障诊断J.人工智能与机器人研究,2023,12(3):236-245.DOI:10.12677/airr.202
2、3.123027 基于支持向量机分类算法的齿轮箱故障诊断基于支持向量机分类算法的齿轮箱故障诊断 时天祥时天祥1*,王先帅王先帅2,罗孙梅罗孙梅3,肖金平肖金平3,张张 泳泳4 1南昌航空大学软件学院,江西 南昌 2安徽工程大学人工智能学院,安徽 芜湖 3南昌航空大学通航(民航)学院,江西 南昌 4南昌航空大学飞行器工程学院,江西 南昌 收稿日期:2023年5月4日;录用日期:2023年8月16日;发布日期:2023年8月24日 摘摘 要要 针对现有齿轮箱故障评价需要研究设备机理造成的效率底下,功能性不强的问题,提出了基于支持向量针对现有齿轮箱故障评价需要研究设备机理造成的效率底下,功能性不强的
3、问题,提出了基于支持向量机分类算法的齿轮箱故障诊断方法。首先,对传感器收集到的振动信号数据进行分析,提取相关特征。机分类算法的齿轮箱故障诊断方法。首先,对传感器收集到的振动信号数据进行分析,提取相关特征。然后,绘制不同传感器在不同状态下的振动信号时间序列函数然后,绘制不同传感器在不同状态下的振动信号时间序列函数,并对这些函数的特征进行了简要分析。并对这些函数的特征进行了简要分析。其次,对数据提取了平均值其次,对数据提取了平均值,方差这两个用以描述振动数据的总体趋势的特征变量方差这两个用以描述振动数据的总体趋势的特征变量,以及峰度以及峰度,偏度这偏度这两个对判断齿轮箱齿轮故障有着重要作用的特征变
4、量,并利用两个对判断齿轮箱齿轮故障有着重要作用的特征变量,并利用MATLAB、SPSSPRO对每一组数据进行了对每一组数据进行了特征数据计算。最后,利用孤立森林、朴素贝叶斯、支持向特征数据计算。最后,利用孤立森林、朴素贝叶斯、支持向量机三种分类算法量机三种分类算法,分别对数据集进行模型分别对数据集进行模型求解,然后通过对比三个算法结果中的准确率、召回率和测试集、训练集之间拟合程度求解,然后通过对比三个算法结果中的准确率、召回率和测试集、训练集之间拟合程度,得到支持向量得到支持向量机分类算法针对齿轮箱的故障检测最优。机分类算法针对齿轮箱的故障检测最优。关键词关键词 齿轮箱齿轮箱,故障诊断故障诊断
5、,孤立森林孤立森林,朴素贝叶斯朴素贝叶斯,支持向量机支持向量机 Gearbox Fault Diagnosis Based on Support Vector Machine Classification Algorithm Tianxiang Shi1*,Xianshuai Wang2,Sunmei Luo3,Jinping Xiao3,Yong Zhang4 1School of Software,Nanchang Hangkong University,Nanchang Jiangxi 2School of Artificial Intelligence,Anhui Polytechni
6、c University,Wuhu Anhui 3School of General Aviation(Civil Aviation),Nanchang University of Aeronautics and Astronautics,Nanchang Jiangxi 4School of Aircraft Engineering,Nanchang University of Aeronautics and Astronautics,Nanchang Jiangxi *通讯作者。时天祥 等 DOI:10.12677/airr.2023.123027 237 人工智能与机器人研究 Recei
7、ved:May 4th,2023;accepted:Aug.16th,2023;published:Aug.24th,2023 Abstract A gearbox fault diagnosis method based on a support vector machine classification algorithm is proposed to address the issue of low efficiency and weak functionality caused by the need to study equipment mechanisms for existing
8、 gearbox fault evaluation.Firstly,the vibration signal data col-lected by the sensor is analyzed and relevant features are extracted.Then,the time series func-tions of vibration signals of different sensors in different states are drawn,and the characteristics of these functions are briefly analyzed
9、.Secondly,two characteristic variables,mean and variance,are extracted from the data to describe the overall trend of vibration data,as well as kurtosis and skewness,which are important for determining gearbox gear faults.Feature data calculations are performed on each set of data using MATLAB and S
10、PSS PRO.Finally,three classification algorithms,namely isolated forest,naive Bayes,and support vector machine,are used to solve the model for the dataset.Then,by comparing the accuracy,recall,and fit between the test and training sets of the three algorithms,the optimal fault detection performance o
11、f the support vector machine clas-sification algorithm for the gearbox is obtained.Keywords Gearbox,Fault Diagnosis,Isolated Forests,Naive Bayes,Support Vector Machine Copyright 2023 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International Licens
12、e(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.引言引言 齿轮箱是现代工业发电机组必不可少的机械装置,其应用范围广泛,例如在风力发电机组、核电齿轮箱、起重机等。其内部结构复杂,工作时由于零部件之间的相互作用以及外部环境影响,内部零部件极易发生损坏1。若设备长期运行在故障状态下运行,轻则系统瘫痪,重则影响生产乃至人身安全,因此对齿轮箱进行早期故障的预防与诊断十分重要。传统的齿轮箱故障诊断方法有直接观察法、无损检测法、振动和噪声检测法、机器性能参数检测法和磨损残余物检测法等2。P.Caselitz 等3将基于频谱分析方法应用于海上风
13、电机组的状态监测和故障诊断中,其主要利用嵌入式开发技术,同时搭建了整个测试系统。Michael 等4通过监测齿轮箱的振动信号以及风机主轴转速、位移和转矩,通过分析这些信号对风电机组进行故障诊断。徐展等5通过频域、小波多分辨率分析和时域等方法展示了风电机组传动链的故障诊断过程,并总结出了故障的监测以及故障的诊断方法。基于数据挖掘的智能故障诊断方法通过数理统计、数学分析、专家系统、情报检索、模式识别、人工智能理论、和机器学习的方法2,可以挖掘出未知的、有效的以及试用的信息,并将这些信息用于设备的故障诊断。戚等6提出了一种基于水母搜索优化变分模态提取(JS-VME)、深度置信网络(DBN)和监督型马
14、氏距离的均匀流形逼近与投影算法(MS-UMAP)的行星齿轮箱故障诊断方法,解决了行星齿轮箱振动信号存在噪声干扰和特征提取困难的问题。针对多尺度的识别诊断问题,庄等7提出了一种基于混合精细复合多尺度波动散布熵(HRCMFDE)特征提取、拉普拉斯分数(LS)特征降维优化和蝙蝠算法优化支持向量机(BA-SVM)故障识别的行星齿轮箱Open AccessOpen Access时天祥 等 DOI:10.12677/airr.2023.123027 238 人工智能与机器人研究 故障诊断方法。魏等8提出一种基于特征融合与深度残差网络(ResNet)的行星齿轮箱故障诊断方法,解决了行星齿轮箱振动信号相互耦合
15、和故障诊断不准确等问题。基于数学建模的诊断方法主要有模糊原理、小波分析、基于线性/非线性判别函数以及贝叶斯判据等方法。此类方法通过研究设备故障机理,由此建立数学模型而进行故障诊断2。魏云冰等5提出一种快速算法,实现了小波系数的快速得出。同时,对该方法在实际中的应用进行了研究,可以快速地诊断出齿轮箱出现的故障。金嘉埼等9采用小波分析对小波理论在风电领域内的应用进行了深入而细致的研究。他通过调用位于 Matlab 中的小波分析模块来进行小波分析,最后发现小波分析理论可以比较好的应用于风电机组的振动监测中10。Amirat 等11对风电内部的分化结构构件位置和类别给出了相应的故障评价方法,可以间接地
16、对风电齿轮箱内齿轮和轴承进行故障诊断,该方法不仅新颖,而且可行性较高。本文通过所得出的齿轮箱振动工作曲线进行评价,利用孤立森林、朴素贝叶斯、支持向量机分类算法,建立齿轮箱的故障诊断模型,并且对数据集进行模型求解。最后,通过模型求解的准确率对模型进行评价,比较不同模型的效果,找到最优算法。2.基本理论基本理论 2.1.孤立森林算法孤立森林算法 孤立森林算法12认为异常样本数量较少,特征值差异较大,因此将异常样本孤立。因为异常样本更靠近根节点,所以孤立森林通过构建二叉树的方法孤立每一个异常样本。孤立森林将训练集通过不放回采样的方式采集子集,然后切割样本集分到节点中的左孩子和右孩子,当孩子节点中有多
17、条相同的数据或只有一条数据或孤立二叉树已达到设置的最大高度时,停止生成孤立二叉树。根据用户指定数目的孤立二叉树组成的孤立森林:()()()(),2E h dc ms d m=(1)其中,d 为样本点,h(d)为样本 d 在每棵孤立二叉树中的路径长度,m 为样本集的样本点总数,E(h(d)为所有路径长度 h(d)的平均值,其中,将树的高度额归一化:()()1212mc mH mm=(2)其中,()lnH kk=+(3)其中,0.5772156649=为欧拉常数。综上所述,绘制模型的构建流程图,如图 1 所示。2.2.支持向量机支持向量机(SVM)算法算法 支持向量机算法是旨在规模训练样本的大规模
18、数据中,对二类分类的问题进行求解的监督学习算法。其起到决定性分类作用的决策边界,是对训练样本求解的最大远距超平面。而其位于间隔边界上的正类和负类样本之间的软边距,则对异常数据有着很好的容错性。支持向量机算法还对一些非线性可分或线性不可分问题有着很好的解决办法,大部分非线性可分的问题可以通过 SVM 算法中核方法的核函数升维为更高维的希尔伯特空间转化为线性可分问题。首先根据导入数据学习目标:1,NXXX=,1,Nyyy=,选用我们经常使用的 SVM 核函数径向基核函数对所得到的矩阵进行升维:时天祥 等 DOI:10.12677/airr.2023.123027 239 人工智能与机器人研究 Fi
19、gure 1.Model flowchart of the isolated forest algorithm 图图 1.孤立森林算法的模型流程图 ()22,p2exK xxyy=(4)其中,为控制核函数宽度的参数,而对线性不可分的情况,引入惩罚因子 C 来控制错误的分类。该实验中参数取值为1=,1000C=。2.3.朴素贝叶斯分类算法朴素贝叶斯分类算法 朴素贝叶斯分类算法13是基于贝叶斯决策理论的分类方法,具有分类准确、速度快,可处理大规模数据等特点,由于第二问的数据集庞大,所以我们选择采用朴素贝叶斯分类算法。朴素贝叶斯分类算法通过统计各类别下各特征量的条件概率来计算出概率密度函数,再根据频
20、率找到缺陷,从而分类14。假设其服从正态分布,则其概率密度函数为:()()()221|exp22ijiiyXiyyxP Xy=连续 (5)其中,12,dXx xx=表示对应样本数据的特征属性集,d 为样本集中的实例,12,nYy yy=表示分类集合,P 表示各类别下各特征量的条件概率估计,i 表示第 i 类故障类型,j 表示第 j 个特征量,表示不同分类下的特征量均值,表示不同分类下特征量的方差。若状态量为离散形式,则:时天祥 等 DOI:10.12677/airr.2023.123027 240 人工智能与机器人研究 ()()()()|jjxiXisum XYyP Xy=离散离散总样本数 (
21、6)根据贝叶斯定理可以得知,()()()()|P X Y P YP Y XP X=(7)在各个特征属性相互独立的前提下,简化为:()()()1|diijijPyXP yP xy=(8)综上所述,绘制模型的构建流程图,如图 2 所示:Figure 2.Model flowchart of naive Bayesian algorithm 图图 2.朴素贝叶斯算法的模型流程图 3.实验实验 3.1.数据准备数据准备 模拟数据统计了各个部位传感器的振动数据,本文通过实验得到的数据,刻画振动幅度时间序列的变化。传感器采样频率为 6.4 kHz,下列为部分实验得到的数据。(其中,isensor中 i 表
22、示第 i 个加速度传感器,1,2,3,4i=),如表 15 所示。将上述数据标签,假设 Label=0 为无故障状态,Label=1 为故障状态 1,Label=2 为故障状态 2,Label=3 为故障状态 3,Label=4 为故障状态 4。部分数据如下表 6 所示。时天祥 等 DOI:10.12677/airr.2023.123027 241 人工智能与机器人研究 Table 1.Partial vibration signals collected under normal working conditions of the gearbox 表表 1.齿轮箱正常工况下采集到的部分振动信
23、号 No sensor1 sensor2 sensor3 sensor4 1 0.0158906 0.0128281 0.0524688 5.00525 2 0.0421406 0.0036875 0.0527969 5.00525 3 0.03225 0.0147031 0.0178906 5.00525 4 0.0129688 0.00684375 0.0100313 5.00525 5 0.0190625 0.0107969 0.0679688 5.00525 6 0.00464063 0.000140625 0.00426563 5.00525 7 0.00798438 0.00231
24、25 0.00760938 5.00525 Table 2.Partial vibration signals collected under fault state 1 表表 2.故障状态 1 下采集到的部分振动信号 No sensor1 sensor2 sensor3 sensor4 1 0.0005 0.0100781 0.0150313 5.00175 2 0.0164688 0.0217031 0.0197813 5.00175 3 0.00732813 0.00728125 0.0119063 5.00175 4 0.00460938 0.00645313 0.0095 5.001
25、75 5 0.0251406 0.0214531 0.00175 5.002 6 0.0670156 0.0088125 0.00282813 5.002 7 0.00570313 0.00735938 0.00090625 5.00175 Table 3.Partial vibration signals collected under fault state 2 表表 3.故障状态 2 下采集到的部分振动信号 No sensor1 sensor2 sensor3 sensor4 1 0.0301719 0.00289063 0.0403438 5.00325 2 0.0253906 0.0
26、180781 0.0295156 5.003 3 0.00329688 0.00414063 0.00660938 5.003 4 0.0719219 0.00434375 0.02725 5.00325 5 0.0266563 0.0195781 0.00460938 5.003 6 0.0555156 0.0237813 0.00110938 5.0035 7 0.0304063 0.0080625 0.00471875 5.004 Table 4.Partial vibration signals collected under fault state 3 表表 4.故障状态 3 下采集
27、到的部分振动信号 No sensor1 sensor2 sensor3 sensor4 1 0.0333594 0.0184844 0.02875 5.00275 2 0.0342031 0.000421875 0.0132813 5.00325 3 0.0154375 0.001875 0.017625 5.00375 时天祥 等 DOI:10.12677/airr.2023.123027 242 人工智能与机器人研究 Continued 4 0.0103594 0.0227656 0.0370781 5.00475 5 0.012375 0.0199219 0.0230313 5.0055
28、 6 0.0165469 0.00453125 0.00301563 5.006 7 0.00879688 0.00714063 0.0685469 5.00625 Table 5.Partial vibration signals collected under fault state 4 表表 5.故障状态 4 下采集到的部分振动信号 No sensor1 sensor2 sensor3 sensor4 1 0.0262813 0.00629688 0.0390156 5.00475 2 0.0321719 0.0008125 0.00459375 5.005 3 0.0530781 0.
29、0254219 0.0174531 5.005 4 0.0538125 0.00453125 0.0239844 5.005 5 0.00598438 0.0103281 0.0693594 5.005 6 0.0104219 0.0166875 0.00329688 5.005 7 0.0146875 0.00464063 0.036375 5.00525 Table 6.Partial data after labels 表表 6.标签后的部分数据 sensor1 sensor2 sensor3 sensor4 label 0.015891 0.012828 0.052469 5.0052
30、5 0 0.04214 0.003688 0.0528 5.00525 0 0.03225 0.0147 0.017891 5.00525 0 0.01297 0.00684 0.01003 5.00525 0 0.01906 0.010797 0.067969 5.00525 0 0.004641 0.000141 0.00427 5.00525 0 0.007984 0.00231 0.00761 5.00525 0 0.02672 0.001656 0.009313 5.002 1 0.07889 0.01736 0.04166 5.00225 1 0.02125 0.03292 0.0
31、2936 5.002 1 0.028031 0.016438 0.010344 5.00225 1 0.081344 0.010109 0.023766 5.002 1 0.008484 0.018156 0.030344 5.002 1 0.03786 0.00544 0.03494 5.002 1 0.01747 0.00236 0.02475 5.004 2 0.01355 0.013422 0.0525 5.00325 2 0.03339 0.018688 0.036078 5.00325 2 0.041313 0.019469 0.017813 5.00325 2 0.001 0.0
32、06359 0.00634 5.00325 2 0.00936 0.021984 0.03022 5.00325 2 时天祥 等 DOI:10.12677/airr.2023.123027 243 人工智能与机器人研究 Continued 0.000516 0.00011 0.042188 5.0035 2 0.023734 0.023734 0.027375 5.0285 3 0.046484 0.026313 0.02438 4.9685 3 0.01525 0.00308 0.01581 5.0685 3 0.06122 0.05052 0.00467 4.90525 3 0.05677
33、 0.01256 0.02478 5.16475 3 0.041203 0.001875 0.013766 4.74125 3 0.041266 0.008078 0.023688 5.50525 3 0.10467 0.00884 0.029516 5.0005 4 0.0388 0.01134 0.02344 5.0005 4 0.064688 0.026297 0.021 5.0005 4 0.089594 0.000141 0.02586 5.0005 4 0.03778 0.00564 0.01875 5.0005 4 0.1003 0.00192 0.000109 5.00025
34、4 0.0307 0.016969 0.000328 5.00025 4 3.2.孤立森林算法孤立森林算法 利用 MATLAB 软件进行编程求解,得到如下结果如表 7、图 3 所示。Table 7.Results of gearbox fault detection model based on isolated forest algorithm 表表 7.基于孤立森林算法的齿轮箱故障检测模型结果 round1 round2 round3 round4 round5 round6 round7 round8 round9 round10 auc 0.54557 0.54172 0.53966
35、0.54946 0.55323 0.54829 0.54264 0.54401 0.54401 0.53712 Figure 3.AUC probability distribution trend of gearbox fault detection model based on isolated forest algorithm 图图 3.基于孤立森林算法的齿轮箱故障检测模型的 AUC概率分布趋势 时天祥 等 DOI:10.12677/airr.2023.123027 244 人工智能与机器人研究 3.3.支持向量机支持向量机(SVM)算法算法 利用 SPSSPRO 软件进行编程求解,得到
36、如下结果,如表 8 所示。Table 8.Gearbox fault detection model results based on support vector machine algorithm 表表 8.基于支持向量机算法的齿轮箱故障检测模型结果 准确率准确率 召回率召回率 精确率精确率 F1 训练集 0.792 0.792 0.679 0.711 测试集 0.793 0.793 0.679 0.713 上表中展示了交叉验证集、训练集和测试集的预测评价指标,通过量化指标来衡量支持向量机的预测效果。其中,通过交叉验证集的评价指标可以不断调整超参数,以得到可靠稳定的模型。准确率:预测正确样
37、本占总样本的比例,准确率越大越好;召回率:实际为正样本的结果中,预测为正样本的比例,召回率越大越好;精确率:预测出来为正样本的结果中,实际为正样本的比例,精确率越大越好。F1:精确率和召回率的调和平均,精确率和召回率是互相影响的,虽然两者都高是一种期望的理想情况,然而实际中常常是精确率高、召回率就低,或者召回率低、但精确率高。若需要兼顾两者,那么就可以用 F1 指标。3.4.朴素贝叶斯分类算法朴素贝叶斯分类算法 利用 SPSSPRO 软件进行编程求解,得到如下结果,如表 9 所示。Table 9.Results of gearbox fault detection model based on
38、 naive Bayesian algorithm 表表 9.基于朴素贝叶斯算法的齿轮箱故障检测模型结果 准确率准确率 召回率召回率 精确率精确率 F1 训练集 0.802 0.802 0.643 0.714 测试集 0.796 0.796 0.633 0.705 上表中展示了交叉验证集、训练集和测试集的预测评价指标,通过量化指标来衡量朴素贝叶斯的预测效果。其中,通过交叉验证集的评价指标可以不断调整超参数,以得到可靠稳定的模型。准确率:预测正确样本占总样本的比例,准确率越大越好;召回率:实际为正样本的结果中,预测为正样本的比例,召回率越大越好;精确率:预测出来为正样本的结果中,实际为正样本的比
39、例,精确率越大越好。F1:精确率和召回率的调和平均,精确率和召回率是互相影响的,虽然两者都高是一种期望的理想情况,然而实际中常常是精确率高、召回率就低,或者召回率低、但精确率高。若需要兼顾两者,那么就可以用 F1 指标。4.结论结论 根据表 79 的数据,对于齿轮箱的故障检测模型,从准确率、召回率和精确率来看,基于朴素贝叶斯算法的齿轮箱故障检测模型的结果更好,但是从拟合曲线的角度来看,基于支持向量机算法的齿轮箱故障检测模型更胜一筹,并且准确率不低于基于朴素贝叶斯算法的齿轮箱故障检测模型的 0.1%,所以支时天祥 等 DOI:10.12677/airr.2023.123027 245 人工智能与
40、机器人研究 持向量机算法的齿轮箱故障检测模型更适合于齿轮箱的故障检测。通过利用孤立森林算法,朴素贝叶斯算法,和支持向量机算法三个回归算法进行比较,从而确定选择训练集拟合值最高的支持向量机算法作为故障检测模型,支持向量机算法还对一些非线性可分或线性不可分问题有着很好的解决办法对于该类时间序列的故障检测模型有着更高的拟合度。通过建立齿轮箱的故障诊断模型,可以避免很多安全隐患,轻则设备损坏,重则影响人身安全,但是故障提前诊断出来后可以尽早发现问题,并且减少解决损坏带来的损失,包括金钱损失、人员损失、机器损失等。基于支持向量机算法的数据训练模型能较好地完成齿轮箱故障的数据分类、诊断。唯一的不足在于支持
41、向量机在原理上主要针对的是两类训练样本的问题,即通常所说的二分类问题。但是在实际的应用过程中,绝大多数的问题还是以多种分类的形式存在的15,因此随着故障种类的增加,该模型的准确率将可能降低。参考文献参考文献 1 薛皓天.基于声发射的行星齿轮箱故障识别研究D:硕士学位论文.成都:电子科技大学,2021.https:/doi.org/10.27005/ki.gdzku.2021.002345 2 胡志红,张秀丽,张向军,白恺,林丽,王素焕.风电机组齿轮箱故障评价方法研究现状J.设备管理与维修,2018(2):31-35.https:/doi.org/10.16621/ki.issn1001-059
42、9.2018.01D.18 3 Caselitz,P.and Giebhard,J.(2003)Fault Prediction Techniques for Offshore Wind Farm Maintenance and Repair Strategies.Institut fuer Solare Energieversorgungstechnik(ISET),Kassel.4 Wilkinson,M.R.,Spinato,F.and Tavner,P.J.(2007)Condition Monitoring of Generators&Other Subassemblies in W
43、ind Turbine Drive Trains.2007 IEEE International Symposium on Diagnostics for Electric Machines,Power Elec-tronics and Drives,Cracow,6-8 September 2007,388-392.https:/doi.org/10.1109/DEMPED.2007.4393125 5 魏云冰.小波变换在电机故障诊断与测试中的应用研究D:博士学位论文.杭州:浙江大学,2002.6 戚晓利,程主梓,崔创创,杨艳.基于 JS-VME-DBN 和 MS-UMAP 的行星齿轮箱故障
44、诊断方法J/OL.航空动力学报:1-12.https:/doi.org/10.13224/ki.jasp.20220221,2022-07-30.7 庄敏,李革,范智军,孔德成.基于 HRCMFDE、LS、BA-SVM 的行星齿轮箱故障诊断J/OL.机电工程,1-10.http:/ 魏秀业,程海吉,贺妍,赵峰,贺全玲.基于特征融合与ResNet的行星齿轮箱故障诊断J.电子测量与仪器学报,2022,36(5):213-222.https:/doi.org/10.13382/j.jemi.B2105065 9 金嘉埼,关新,单光坤,等.小波理论在风力发电机振动监测中的应用J.沈阳工业大学学报,20
45、08,30(5):520-524.10 Amirat,Y.,Benbouzid,M.E.H.,Al-Ahmar,E.,et al.(2009)A Brief Status on Condition Monitoring and Fault Diag-nosis in Wind Energy Conversion System.Renewable and Sustainable Energy Reviews,13,2629-2636.https:/doi.org/10.1016/j.rser.2009.06.031 11 Wu,J.-D.and Liu,C.-H.(2009)An Expert
46、System for Fault Diagnosis in Internal Combustion Engines Using Wavelet Packet Transform and Neural Network.Expert System with Applications,36,4278-4286.https:/doi.org/10.1016/j.eswa.2008.03.008 12 王诚,狄萱.孤立森林算法研究及并行化实现J.计算机技术与发展,2021,31(6):13-18.13 陈玉雪.一种基于朴素贝叶斯的 Honeywords 区分攻击方法J.网络安全技术与应用,2022(5):41-43.14 李亚锦,刘英男,张婉莹,于大洋,张国新,苏宁.基于朴素贝叶斯算法的避雷器缺陷识别方法研究J.电工电气,2022(1):20-23.15 张馨月,宋绍成.突发事件中基于支持向量机算法的文本分类研究J.信息技术与信息化,2022(8):13-16.