收藏 分销(赏)

数论习题答案.doc

上传人:xrp****65 文档编号:6395852 上传时间:2024-12-07 格式:DOC 页数:10 大小:653.50KB
下载 相关 举报
数论习题答案.doc_第1页
第1页 / 共10页
数论习题答案.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述
1 证明:都是的倍数。 存在个整数使 又是任意个整数 即是的整数 2 证: 从而可知 3 证: 不全为 在整数集合中存在正整数,因而 有形如的最小整数 ,由带余除法有 则,由是中的最小整数知 下证第二题 (为任意整数) 又有 故 4 证:作序列则必在此序列的某两项之间 即存在一个整数,使成立 当为偶数时,若则令,则有 若 则令,则同样有 当为奇数时,若则令,则有 若 ,则令 则同样有 综上 存在性得证 下证唯一性 当为奇数时,设则 而 矛盾 故 当为偶数时,不唯一,举例如下:此时为整数 5.证:令此和数为S,根据此和数的结构特点,我们可构造一个整数M,使MS不是整数,从而证明S不是整数 (1) 令S=,取M=这里k是使最大整数,p是不大于n的最大奇数。则在1,2,3,┄,n中必存在一个,所以 MS= 由M=知,必为整数,显然不是整数, MS不是整数,从而S不是整数 (2) 令M=则 SM=, 由M=知,而 不为整数 SM不为整数,从而也不是整数 1. 证:设是a,b的任一公因数,|a,|b 由带余除法 。 |, |,┄, |, 即是的因数。 反过来|且|,若则,所以的因数都是的公因数,从而的公因数与的因数相同。 2. 见本书P2,P3第3题证明。 3. 有§1习题4知:使。, ,使如此类推知: 且 而b是一个有限数,使 ,存在 其求法为 4。证:由P3§1习题4知在(1)式中有 ,而 , ,即 1,证:必要性。若,则由推论1.1知存在两个整数s,t满足:, 充分性。若存在整数s,t使as+bt=1,则a,b不全为0。 又因为,所以 即。又, 2.证:设,则 又设则 。反之若,则,。 从而,即= 3.证:设(1)的任一有理根为,。则 (2) 由, 所以q整除上式的右端,所以,又,所以; 又由(2)有 因为p整除上式的右端,所以 ,,所以 故(1)的有理根为,且。 假设为有理数,,次方程为整系数方程,则由上述结论,可知其有有理根只能是 ,这与为其有理根矛盾。故为无理数。 另证,设为有理数=,则 但由知,矛盾,故不是有理数。 1. 见书后。 2. 解:因为8|848,所以, 又8|856,所以8|B,, 又4|32,所以4|C, 又9|(3+2+3+4+3+3),所以9|D,, 又9|(3+5+9+3+7),所以9|E, 又 所以;同理有。 3.证:, ,. ,又显然 ,同理可得, 推广.设,, (其中为质数为任意n个正整数) 则 4.证:由,,有 从而有. 5.证:(反证法)设为奇数)则          ,为合数矛盾,故n一定为2的方幂. 2.(i)证::设.则由性质II知,所以,  所以,所以,又在m与m+1之间只有唯一整数m,所以.  (ii}[证一]设,则 ①当时, ; ②当时,; [证二]令, 是以为周期的函数。 又当,即。 [评注]:[证一]充分体现了 常规方法的特点,而[证二]则表现了较高的技巧。 3.(i)证:由高斯函数[x]的定义有。则 当 当 故 (ii)证:设,则有 下面分两个区间讨论: ①若,则,所以,所以 ②若,则,所以。所以 2.3 1 证:由知 及都是单位圆周上的有理点。 另一方面,单位圆周上的有理点可表示为,于是得,又的一切非整数解都可表示为:,于是第一象限中上的有理点可表示为,由于单位圆周上的有理点的对称性,放上的任意有理点可表为 及,其中a,b不全为0,号可任意取。 3.2 1.证:由的取值可得个数,若,则,又,。 又,又,。 为同一数,矛盾,故原命题成立。 3.(i)的引理 对任何正整数a,可以唯一的表示成的形式,其中。 证:(i) 设 由于取值故取值为0,1,2。这样的数有2H+1个,其中最小的 数为0,最大的数为2H,所以A+H可以表示下列各数:0,1,2,,上列数中减去H得,则A可表示上列各数,且表示唯一。 (ii)事实上,只需这样的(n+1)个砝码即可。由(I)知 1到H中任一斤有且仅有一种表示法,当时,将砝码放在重物盘中;当时,不放砝码;当时,将砝码放在砝码盘中。如此即可。 3.3 1. 证:由定理1知所在的模m的剩余系是与模m互质的。又已知 两两对模m不同余,所以这 个整数分别属于不同的模m的剩余类。再由定理1知结论成立。 2 .证:设模m的一个简化剩余系是,即,由于,当通过m的简化剩余系时,由定理3知,也通过模m的剩余系。故对,存在使, . 3.(i)证:由定理5知:p为质数时,。 所以即证。 (ii)证:设整数m的所有正约数是,考察m的完全剩余系 (1) 对(1)中任一数,设(a, m)=d,则,即(1)中任一数与的最大公约数是中的数。反之,对每一个(1)中必有一数a使(例如),而且对(1)中任一数不可能出现,于是,将(1)中的数按其与m的最大公约数的情形分类:(1)中与m的最大公约数是的数有个;(1)中与m的最大公约数是的数有个;┄,(1)中与m的最大公约数是的数有个;所以,即,注意是m的约数,所以 2. 4 1. 解:,即,因为,由欧拉定理有,所以 所以从今天起再过天是星期五. 3.(i)证:对用数学归纳法.①当a=2时,证明, ,对有为整数, 又因为,所以。,所以可设为整数。。 所以。 ②假设命题对成立,即,则对于有 所以命题对也成立。综合①,②可知对一切自然数a,命题成立。 (ii)证:。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服