1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1为增加绿化面积,某小区将原来正方形地砖更换为如图所示
2、的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A2a2B3a2C4a2D5a22三角形的内心是( )A三条中线的交点B三条高的交点C三边的垂直平分线的交点D三条角平分线的交点3小明同学发现自己一本书的宽与长之比是黄金比约为0.1已知这本书的长为20cm,则它的宽约为( )A12.36cmB13.6cmC32.386cmD7.64cm4如图,已知A,B是反比例函数y= (k0,x0)图象上的两点,BCx轴,交y轴于点C,动点P从坐标原点O出发,沿OABC(图中“”所示路线)匀速运动,终点为C,过P作PMx轴,垂足为M设三角形OMP
3、的面积为S,P点运动时间为t,则S关于x的函数图象大致为() ABCD5若关于x的方程(m1)x2+mx10是一元二次方程,则m的取值范围是()Am1Bm1Cm1Dm06如图,在ABC中E、F分别是AB、AC上的点,EFBC,且,若AEF的面积为2,则四边形EBCF的面积为 ( )A4B6C16D187抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664观察上表,得出下面结论:抛物线与x轴的一个交点为(3,0);函数y=ax2+bx+C的最大值为6;抛物线的对称轴是x=;在对称轴左侧,y随x增大而增大其中正确有()A1个B2个C3个D4个8如图,在
4、中,如果,那么的值为( )ABCD9如图,在矩形ABCD中,E是AD边的中点,BEAC,垂足为点F,连接DF,下列四个结论:AEFCAB;CF=2AF;DF=DC;tanCAD=其中正确的结论有()A4个B3个C2个D1个10已知在RtABC中,C90,BC5,那么AB的长为()A5sinAB5cosACD11如图,AB是半径为1的O的直径,点C在O上,CAB30,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为( )A1B2CD12一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是A60B90C120D180二、填空题(每题4分,共24分)13已知直线y=k
5、x(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为_14ABC中,A90,ABAC,以A为圆心的圆切BC于点D,若BC12cm,则A的半径为_cm15二次函数y=ax2+bx+c(a、b、c为常数且a0)中的x与y的部分对应值如下表: x21012345y503430512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为3;(2)当x2时,y0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧则其中正确结论是_ (填上正确的序号)16一个布袋里装有10个只有颜色不同
6、的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为_17如图,一段抛物线:y=-x(x-2)(0x2)记为C1 ,它与x轴交于两点O,A;将C1绕点A旋转180得到C2 , 交x轴于A1;将C2绕点A1旋转180得到C3 , 交x轴于点A2 如此进行下去,直至得到C2018 , 若点P(4035,m)在第2018段抛物线上,则m的值为_18如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_三、解答题(共78分)19(8分)在一个不透明的布袋里装有
7、4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y)(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=x+5图象上的概率20(8分)如图,在平面直角坐标系xOy中,曲线经过点A(1)求曲线的表达式; (2)直线y=ax+3(a0)与曲线围成的封闭区域为图象G当时,直接写出图象G上的整数点个数是 ;(注:横,纵坐标均为整数的点称为整点,图象G包含边界)当图象G内只有3个整数点时,直接写出a的取值范围21(8分)将四人随机分成甲、乙两
8、组参加羽毛球比赛,每组两人(1)在甲组的概率是多少?(2)都在甲组的概率是多少?22(10分)用配方法解方程:x28x+1=023(10分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=10x+1(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24(10分)我县寿源壹号楼盘准备以每平方米元均价对外销售,由于国务院有关房地产的新政策出台,购房者持币观望,
9、房地产开发商为了加快资金周转,对价格进行两次下调后,决定以每平方米元的均价开盘销售(1)求平均每次下调的百分率(2)某人准备以开盘均价购买一套平方米的住房,开发商给予以下两种优惠方案供选择:打折销售;不打折,一次性送装修费每平方米元试问哪种方案更优惠?25(12分)如图,OAB和OCD中,OAOB,OCOD,AOBCOD,AC、BD交于M(1)如图1,当90时,AMD的度数为 (2)如图2,当60时,AMD的度数为 (3)如图3,当OCD绕O点任意旋转时,AMD与是否存在着确定的数量关系?如果存在,请你用表示AMD,并图3进行证明;若不确定,说明理由26如图,在四边形中,点为的中点,(1)求证
10、:;(2)若,求线段的长参考答案一、选择题(每题4分,共48分)1、A【分析】正多边形和圆,等腰直角三角形的性质,正方形的性质图案中间的阴影部分是正方形,面积是,由于原来地砖更换成正八边形,四周一个阴影部分是对角线为的正方形的一半,它的面积用对角线积的一半【详解】解:故选A2、D【分析】根据三角形的内心的定义解答即可【详解】解:因为三角形的内心为三个内角平分线的交点,故选:D【点睛】此题主要考查了三角形内切圆与内心,解题的关键是要熟记内心的定义和性质3、A【分析】根据黄金分割的比值约为0.1列式进行计算即可得解【详解】解:书的宽与长之比为黄金比,书的长为20cm,书的宽约为200.112.36
11、cm故选:A【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键4、A【分析】结合点P的运动,将点P的运动路线分成OA、AB、BC三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案【详解】设AOM=,点P运动的速度为a,当点P从点O运动到点A的过程中,S=a2cossint2,由于及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,OPM的高与在B点时相同,故本段图象应该为一段下降的
12、线段;故选A点睛:本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在OA、AB、BC三段位置时三角形OMP的面积计算方式5、A【分析】根据一元二次方程的定义可得m10,再解即可【详解】解:由题意得:m10,解得:m1,故选:A【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程6、C【解析】解:,EFBC,AEFABC,AEF的面积为2,SABC=18,则S四边形EBCF=SABC-SAEF=18-2=1故选C【点睛】本题考查相似三角形的判定与性质,难度不大7、C【解析】从表中可知,抛物线过(0,6),(1,6),
13、所以可得抛物线的对称轴是x=,故正确.当x=-2时,y=0,根据对称性当抛物线与x轴的另一个交点坐标为x=2+2=3.故;当x=2时,y=4,所以在对称轴的右侧,随着x增大,y在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故错,对.选C.8、B【分析】由平行线分线段成比例可得到,从而AC的长度可求.【详解】 故选B【点睛】本题主要考查平行线分线段成比例,掌握平行线分线段成比例是解题的关键.9、B【解析】试题解析:如图,过D作DMBE交AC于N,四边形ABCD是矩形,ADBC,ABC=90,AD=BC,BEAC于点F,EAC=ACB,ABC=AFE=90,AEFCAB,故正确;A
14、DBC,AEFCBF,AE=AD=BC,CF=2AF,故正确;DEBM,BEDM,四边形BMDE是平行四边形,BM=DE=BC,BM=CM,CN=NF,BEAC于点F,DMBE,DNCF,DM垂直平分CF,DF=DC,故正确;设AE=a,AB=b,则AD=2a,由BAEADC,有,即b=,tanCAD=故不正确;故选B【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键解题时注意:相似三角形的对应边成比例10、C【解析】根据三角函数即可解答.【详解】解:已知在RtABC中,C90,BC5,故sinA ,故
15、AB ,选C.【点睛】本题考查正弦函数,掌握公式是解题关键.11、C【分析】作D点关于AB的对称点E,连接OCOE、CE,CE交AB于P,如图,利用对称的性质得到PE=PD,再根据两点之间线段最短判断点P点在P时,PC+PD的值最小,接着根据圆周角定理得到BOC=60,BOE=30,然后通过证明COE为等腰直角三角形得到CE的长即可【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P,如图,点D与点E关于AB对称,PE=PD,PC+PD=PC+PE=CE,点P点在P时,PC+PD的值最小,最小值为CE的长度BOC=2CAB=230=60,而D为的中点,BOEBOC=30,CO
16、E=60+30=90,COE为等腰直角三角形,CEOC,PC+PD的最小值为故选:C【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半12、B【解析】试题分析:设母线长为R,底面半径为r,底面周长=2r,底面面积=r2,侧面面积=rR,侧面积是底面积的4倍,4r2=rRR=4r底面周长=R圆锥的底面周长等于它的侧面展开图的弧长,设圆心角为n,有,n=1故选B二、填空题(每题4分,共24分)13、0m【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【
17、详解】把点(12,5)代入直线y=kx得,5=12k,k=;由y=x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=x+m(m0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,A(m,0),B(0,m),即OA=m,OB=m,在RtOAB中,AB=,过点O作ODAB于D,SABO=ODAB=OAOB,OD=mm,m0,解得OD=m,由直线与圆的位置关系可知m 6,解得m,故答案为0m.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较
18、直观明了.14、1【分析】由切线性质知ADBC,根据ABAC可得BDCDADBC1【详解】解:如图,连接AD,则ADBC,ABAC,BDCDADBC1,故答案为:1【点睛】本题考查了圆的切线性质,解题的关键在于掌握圆的切线性质.15、(2)(3)【分析】根据表格数据求出二次函数的对称轴为直线x1,然后根据二次函数的性质对各小题分析判断即可得解【详解】由表格数据可知,二次函数的对称轴为直线x1,所以,当x1时,二次函数yax2bxc有最小值,最小值为4;故(1)小题错误;根据表格数据,当1x3时,y0,所以, x2时,y0正确,故(2)小题正确;二次函数yax2bxc的图象与x轴有两个交点,分别
19、为(1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个故答案为:(2)(3)【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键16、3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,0.3,解得m3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.17、-1【解析】每次变化时,开口方向变化但形状不变,则 ,故开口向上时a=1,
20、开口向下时a=-1;与x轴的交点在变化,可发现规律抛物线Cn与x轴交点的规律是(2n-2,0)和(2n,0),由两点式 求得解析式,把x=4035代入解析式,即可求得m的值.【详解】由抛物线C1:y=-x(x-2),令y=0,-x(x-2)=0,解得 与x轴的交点为O(0,0),A(2,0).抛物线C2的开口向上,且与x轴的交点为A(2,0)和A1(4,0),则抛物线C2:y= (x-2)(x-4);抛物线C3的开口向下,且与x轴的交点为A1(4,0)和A2(6,0),则抛物线C3:y= -(x-4)(x-6);抛物线C4的开口向上,且与x轴的交点为A2(6,0)和A3(8,0),则抛物线C4
21、:y=(x-6)(x-8);同理:抛物线C2018的开口向上,且与x轴的交点为A2016(4034,0)和A2017(4036,0),则抛物线C2018:y=(x-4034)(x-4036);当x=4035时,y= 1(-1)-1.故答案为:-1.【点睛】本题考查了二次函数的性质及旋转的性质,解题的关键是求出第2018段抛物线的解析式18、 【解析】试题解析:共6个数,小于5的有4个,P(小于5)=故答案为三、解答题(共78分)19、(1)画树状图或列表见解析;(2).【解析】试题分析:根据题意列出表格,找出所有的点Q坐标,根据函数上的点的特征得出符合条件的点,根据概率的计算方法进行计算.试题
22、解析:(1)列表得:(x,y)12341(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3, 1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)共有12种等可能的结果,其中在函数y=x+6图象上的有2种,即:(2,4),(4,2), 点P(x,y)在函数y=x+6图象上的概率为:P=考点:概率的计算.20、(1)y=;(2)3;-1a-【分析】(1)由题意代入A点坐标,求出曲线的表达式即可;
23、(2)当时,根据图像直接写出图象G上的整数点个数即可;当图象G内只有3个整数点时,根据图像直接写出a的取值范围【详解】解:(1)A(1,1), k=1, (2)观察图形时,可知个数为3; 观察图像得到【点睛】本题考查反比例函数图像相关性质,熟练掌握反比例函数图像相关性质是解题关键.21、(1)(2)【解析】解:所有可能出现的结果如下:甲组乙组结果()()()()()()总共有6种结果,每种结果出现的可能性相同(1)所有的结果中,满足在甲组的结果有3种,所以在甲组的概率是, 2分(2)所有的结果中,满足都在甲组的结果有1种,所以都在甲组的概率是利用表格表示出所有可能的结果,根据在甲组的概率=,都
24、在甲组的概率=22、,【解析】试题分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式试题解析:x28x+1=0,x28x=1,x28x+16=1+16,(x4)2=15,解得,考点:解一元二次方程-配方法23、y=10x2+1600x48000;80元时,最大利润为16000元【解析】试题分析:(1)根据“总利润=单件的利润销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润试题解析:(1)S=y(x20)=(x40)(10x+1)=10x2+1600x48000;(2)S
25、=10x2+1600x48000=10(x80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元考点:二次函数的应用24、(1)10%;(2)选择方案更优惠【分析】(1)此题可以通过设出平均每次下调的百分率为,根据等量关系“起初每平米的均价下调百分率)下调百分率)两次下调后的均价”,列出一元二次方程求出(2)对于方案的确定,可以通过比较两种方案得出的费用:方案:下调后的均价两年物业管理费方案:下调后的均价,比较确定出更优惠的方案【详解】解:(1)设平均每次降价的百分率是,依题意得,解得:,(不合题意,舍去)答:平均每次降价的百分率为(2)方案购房优惠:4
26、050120(1-0.98)=9720(元)方案购房优惠:70120=8400(元)9720(元)8400(元)答:选择方案更优惠【点睛】本题结合实际问题考查了一元二次方程的应用,根据题意找准等量关系从而列出函数关系式是解题的关键25、(1)1;(2)2;(3)AMD180,证明详见解析【解析】(1)如图1中,设OA交BD于K只要证明BODAOC,推出OBD=OAC,由AKM=BKO,可得AMK=BOK=1;(2)如图2中,设OA交BD于K只要证明BODAOC,推出OBD=OAC,由AKM=BKO,推出AMK=BOK=2;(3)如图3中,设OA交BD于K只要证明BODAOC,可得OBD=OAC
27、,由AKO=BKM,推出AOK=BMK=可得AMD=180-.【详解】(1)如图1中,设OA交BD于KOAOB,OCOD,AOBCOD,BODAOC,BODAOC,OBDOAC,AKMBKO,AMKBOK1故答案为1(2)如图2中,设OA交BD于KOAOB,OCOD,AOBCOD,BODAOC,BODAOC,OBDOAC,AKMBKO,AMKBOK2故答案为2(3)如图3中,设OA交BD于KOAOB,OCOD,AOBCOD,BODAOC,BODAOC,OBDOAC,AKOBKM,AOKBMKAMD180【点睛】本题考查几何变换综合题、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会利用:“8字型”证明角相等26、(1)见解析;(2)1【分析】(1)由得出,从而有,等量代换之后有,再加上即可证明相似;(2)由相似三角形的性质可求出AE的长度,进而求出AB的长度,过点D作DFBC于点F,则四边形ABFD是矩形,得出,从而求出CF的长度,最后利用勾股定理即可求解【详解】(1) (2)过点D作DFBC于点F 点为的中点 , ,DFBC四边形ABFD是矩形 【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法及性质是解题的关键