1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,基本不等式的应用,1,一、知识梳理,1.重要的不等式,重要不等式,应用条件,“”何时取得,作用,变形,一.知识点复习,2,已知,都是正数,给出下面两个命题:,如果积,是定值,,那么当,时,和,有最小值,;,如果和,是定值,,那么当,时,积,有最大值,问题:,(1)两个命题是否都正确?,(2)应用此命题必须具备什么条件?,(3)此命题有什么作用?,二、引入情境,3,证明:,当,(定值)时,,上式当且仅当,时取“=”,当,时有,上式当且仅当,时取“=”,当,时有,4,(1)两个命题都正确:,积定和小,和定积大,
2、(2)应用此命题求最值时必须具备的条件:,一“正”、二“定”、三“相等”,(3),此命题主要应用于求函数的最大、最小值,5,三、课前练习,1.函数 在_时,有最大值_,2.函数 在_时,有最小值_,3.已知 ,则 的最大值为_,4.已知为正数 ,且 ,则 的最小值为_,6,答案:,1.,2.,3.,6,4.,7,8,9,10,11,另解:,由题知,直线,的斜率一定存在。设,的方程为,令,,则,令,,则,,故,当且仅当,时取等号所以,当,面积最小时,直线,的方程为,即,,即,12,13,14,1)利用基本不等式求最值的条件为,“一正,二定,三相等”,2)解决实际问题注意:,审题建模求解评价,3)注重,分类讨论、换元、化归,等数学思想方法在解题中的运用。同时,注重,从不同的角度思考问题,适当考虑“一题多解”.,小结:,15,(3)如图,设矩形ABCD(ABCD)的周长为24,把它关于AC对折起来,AB折过去以后,交DC于点P,AB=x,求ADP的最大面积及相应的x值。,12-x,x,课后作业,16,谢谢 再见,17,