资源描述
跟踪训练66 二次函数的应用
1.某商品现在的售价为每件35元.每天可卖出50件.市场调查反映:如果调整价格.每降价1元,每天可多卖出2件.请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?
设每件商品降价元.每天的销售额为元.
(I) 分析:根据问题中的数量关系.用含的式子填表:
(Ⅱ) (由以上分析,用含的式子表示,并求出问题的解)
2. 一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2
万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5倍,则预计今年年销售量将比去年年销售量增加倍(本题中0<≤11).
⑴用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.
⑵求今年这种玩具的每件利润元与之间的函数关系式.
⑶设今年这种玩具的年销售利润为w万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
3.我省某工艺厂为全运会设计了一款成本为每件20元得工艺品,投放市场进行试销后发现每天的销售量(件)是售价(元∕件)的一次函数,当售价为22元∕件时,每天销售量为780件;当售价为25元∕件时,每天的销售量为750件.
(1)求y与的函数关系式;
(2)如果该工艺品售价最高不能超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?(利润=售价-成本)
4. 手工课上,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线长度之和恰好为60cm,菱形的面积S(单位:cm2)随其中一条对角线的长 (单位:cm)的变化而变化.
(1)请直接写出S与x之间的函数关系式(不要求写出自变量的取值范围);
(2)当是多少时,菱形风筝面积S最大?最大面积是多少?
5.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经过调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.将销售价定为多少时,才能使每天所获利润最大?最大利润是多少?
6. 已知:二次函数,其图象对称轴为直线=1,且经过点(2,-).
(1)求此二次函数的解析式.
(2)设该图象与轴交于B、C两点(B点在C点的左侧),请在此二次函数轴下方的图象上确定一点E,使△EBC的面积最大,并求出最大面积.
7、(2013泰安)如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0)
(1)求该抛物线的解析式.
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
8、(2012•泰安)如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=﹣x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.
9.(2009•泰安)(本小题满分10分)如图,△OAB是边长为2的等边三角形,过点A的直线(1)求点E的坐标;(2)求过 A、O、E三点的抛物线解析式;(3)若点P是(2)中求出的抛物线AE段上一动点(不与A、E重合),设四边形OAPE的面积为S,求S的最大值。
展开阅读全文