收藏 分销(赏)

课时跟踪检测(三十一) 等比数列及其前n项和.doc

上传人:仙人****88 文档编号:6107034 上传时间:2024-11-28 格式:DOC 页数:4 大小:60.50KB
下载 相关 举报
课时跟踪检测(三十一) 等比数列及其前n项和.doc_第1页
第1页 / 共4页
课时跟踪检测(三十一) 等比数列及其前n项和.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
课时跟踪检测(三十一) 等比数列及其前n项和 第Ⅰ组:全员必做题 1.(2013·新课标全国卷Ⅱ)等比数列{an}的前n项和为Sn,已知S3 = a2+10a1 ,a5=9,则a1=(  ) A.           B.- C. D.- 2.已知数列{an},则“an,an+1,an+2(n∈N+)成等比数列”是“a=anan+2”的(  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.(2013·郑州质量预测)在数列{an}中,an+1=can(c为非零常数),前n项和为Sn=3n+k,则实数k为(  ) A.-1 B.0 C.1 D.2 4.(2013·江西省七校联考)设各项都是正数的等比数列{an},Sn为前n项和,且S10=10,S30=70,那么S40=(  ) A.150 B.-200 C.150或-200 D.400或-50 5.(2013·莱芜模拟)已知数列{an},{bn}满足a1=b1=3,an+1-an==3,n∈N+,若数列{cn}满足cn=ban,则c2 013=(  ) A.92 012 B.272 012 C.92 013 D.272 013 6.(2012·江西高考)等比数列{an}的前n项和为Sn,公比不为1.若a1=1,且对任意的n∈N+都有an+2+an+1-2an=0,则S5=________. 7.(2013·新课标全国卷Ⅰ)若数列{an}的前n项和Sn=an+,则{an}的通项公式是an=________. 8.(2013·北京市海淀区高三上学期期末)数列{an}满足a1=2且对任意的m,n∈N+,都有=an,则a3=________;{an}的前n项和Sn=________. 9.已知数列{an}的前n项和为Sn,且Sn=4an-3(n∈N+). (1)证明:数列{an}是等比数列; (2)若数列{bn}满足bn+1=an+bn(n∈N+),且b1=2,求数列{bn}的通项公式. 10.(2013·东北三校联考)已知等比数列{an}的所有项均为正数,首项a1=1,且a4,3a3,a5成等差数列. (1)求数列{an}的通项公式; (2)数列{an+1-λan}的前n项和为Sn,若Sn=2n-1(n∈N+),求实数λ的值. 第Ⅱ组:重点选做题 1.等比数列{an}的前n项和为Sn,若a1+a2+a3+a4=1,a5+a6+a7+a8=2,Sn=15,则项数n为(  ) A.12 B.14 C.15 D.16 2.设f(x)是定义在R上恒不为零的函数,对任意x,y∈R,都有f(x)·f(y)=f(x+y),若a1=,an=f(n)(n∈N+),则数列{an}的前n项和Sn的取值范围是________. 答 案 第Ⅰ组:全员必做题 1.选C 由题知q≠1,则S3==a1q+10a1,得q2=9,又a5=a1q4=9,则a1=,故选C. 2.选A 显然,n∈N+,an,an+1,an+2成等比数列,则a=anan+2,反之,则不一定成立,举反例,如数列为1,0,0,0,… 3.选A 依题意得,数列{an}是等比数列, a1=3+k,a2=S2-S1=6,a3=S3-S2=18,则62=18(3+k),由此解得k=-1,选A. 4.选A 依题意,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0, 因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80.S40=150.选A. 5.选D 由已知条件知{an}是首项为3,公差为3的等差数列,数列{bn}是首项为3,公比为3的等比数列,∴an=3n,bn=3n,又cn=ban=33n,∴c2 013=33×2 013=272 013.故选D. 6.解析:由an+2+an+1-2an=0,得anq2+anq-2an=0,显然an≠0,所以q2+q-2=0.又q≠1,解得q=-2.又a1=1,所以S5==11. 答案:11 7.解析:当n=1时,由已知Sn=an+,得a1=a1+,即a1=1;当n≥2时,由已知得到Sn-1=an-1+,所以an=Sn-Sn-1=-=an-an-1, 所以an=-2an-1,所以数列{an}为以1为首项,以-2为公比的等比数列,所以an=(-2)n-1. 答案:(-2)n-1 8.解析:∵=an,∴an+m=an·am, ∴a3=a1+2=a1·a2=a1·a1·a1=23=8; 令m=1,则有an+1=an·a1=2an, ∴数列{an}是首项为a1=2,公比q=2的等比数列,∴Sn==2n+1-2. 答案:8 2n+1-2 9.解:(1)证明:依题意Sn=4an-3(n∈N+), n=1时,a1=4a1-3,解得a1=1. 因为Sn=4an-3,则Sn-1=4an-1-3(n≥2), 所以当n≥2时,an=Sn-Sn-1=4an-4an-1, 整理得an=an-1. 又a1=1≠0,所以{an}是首项为1, 公比为的等比数列. (2)因为an=n-1, 由bn+1=an+bn(n∈N+), 得bn+1-bn=n-1. 可得bn=b1+(b2-b1)+(b3-b2)+…+ (bn-bn-1) =2+=3·n-1-1(n≥2), 当n=1时也满足, 所以数列{bn}的通项公式为bn=3·n-1-1. 10.解:(1)设数列{an}的公比为q, 由条件可知q3,3q2,q4成等差数列, ∴6q2=q3+q4,解得q=-3或q=2, ∵q>0,∴q=2.∴数列{an}的通项公式为an=2n-1(n∈N+). (2)记bn=an+1-λan, 则bn=2n-λ·2n-1=(2-λ)2n-1, 若λ=2,则bn=0,Sn=0,不符合条件; 若λ≠2,则=2,数列{bn}为首项为2-λ,公比为2的等比数列, 此时Sn=(1-2n)=(2-λ)(2n-1), ∵Sn=2n-1(n∈N+),∴λ=1. 第Ⅱ组:重点选做题 1.选D =q4=2, 由a1+a2+a3+a4=1, 得a1·=1,∴a1=q-1, 又Sn=15,即=15,∴qn=16, 又∵q4=2,∴n=16.故选D. 2.解析:由条件得:f(n)·f(1)=f(n+1),即an+1=an·,所以数列{an}是首项与公比均为的等比数列,求和得Sn=1-n,所以≤Sn<1. 答案:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服