收藏 分销(赏)

对中点四边形的探究与延伸.doc

上传人:仙人****88 文档编号:6096485 上传时间:2024-11-27 格式:DOC 页数:5 大小:134.50KB
下载 相关 举报
对中点四边形的探究与延伸.doc_第1页
第1页 / 共5页
对中点四边形的探究与延伸.doc_第2页
第2页 / 共5页
对中点四边形的探究与延伸.doc_第3页
第3页 / 共5页
对中点四边形的探究与延伸.doc_第4页
第4页 / 共5页
对中点四边形的探究与延伸.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、对中点四边形的探究与延伸一、基本性质归纳:例1杨伯家小院子的四棵小树刚好在其梯形院子各边的中点上,若在四边形种上小草,则这块草地的形状是( )A平行四边形 B矩形 C正方形 D菱形顺次连接菱形各边的中点所得的四边形一定是( )A等腰梯形B正方形C平行四边形D矩形分析:这是对平行四边形的定义和判定定理的考查解该题的思路是构造三角形及其中位线,这是数学中常用的“建模”思想,把四边形两边的中点转化为三角形两边的中点,又体现出转化思想我们可从四边形的四条边的数量关系和位置关系入手,由题设可知、分别为、的中点,符合三角形中位线定理的条件,可构造三角形的中位线解:如图所示:以梯形的中点四边形为例,在中、分

2、别为、的中点平行且等于的一半,同理,平行且等于的一半,所以平行且等于,所以四边形为平行四边形,又因为菱形的两条对角线互相垂直,所以四边形邻边互相垂直,故菱形的中点四边形是矩形所以选A;选D温馨提示:判定中点四边形的形状要抓住两个关键点:一是三角形中位线定理的应用,二是原四边形两条对角线的数量关系和位置关系为了便于同学们更好地理解和掌握,我们把常见的中点四边形形状归纳如下表原四边形中点四边形任意四边形平行四边形平行四边形两条对角线相等的四边形(包括矩形和等腰梯形)菱形两条对角线互相垂直的四边形(包括菱形)矩形两条对角线相等且互相垂直的四边形(包括正方形)正方形二、新题探究:条件开放性问题:例2在

3、四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,如果四边形EFGH为菱形,那么四边形ABCD是 (只要写出一种即可)解析:本题是一个开放性问题,结论不唯一:如图:四边形为一个中点四边形,其形状可以由原四边形的对角线来决定,因为任意四边形的中点四边形都是平行四边形,使四边形为菱形,只要有原四边形的对角线相等即可,即,(即四边相等的四边形为菱形);当然也可以从菱形的判定出发,因为四边形为平行四边形,所以对角线相互平分,只要再有对角线相互垂直即可,所以可以添加(即符合对角线相等且相互平分的四边形为菱形);还可以添加(即对边相等的平行四边形为菱形)温馨提示:中点四边形形状是由原

4、四边形的两条对角线和的数量关系和位置关系来确定的,首先,不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形,其次,具体的中点四边形的形状还需需参考原四边形的具备的其他条件来决定问题延伸:例3在ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE(1)如图,试判断四边形EGFH的形状,并说明理由;(2)如图,当EFGH时,四边形EGFH的形状是 ;(3)如图,在(2)的条件下,若ACBD,四边形EGFH的形状是 ;(4)如图,在(3)的条件下,若ACBD,试判断四边形EGFH的形状,并说明理由解析:(1)根据题

5、意容易得EOFO,GOHO,从而判断四边形EGFH为平行四边形;(2)根据对角线互相垂直的平行四边形是菱形可得答案;(3)从图形观察可知AC与BD的数量关系并不影响四边形EGFH的形状;(4)当ACBD,ACBD时,ABCD为正方形,结合已知条件容易得BOGCOF,所以有OGOF,即EFGH,结合EFGH,可得EGFH是正方形解:(1)四边形EGFH是平行四边形证明:ABCD的对角线AC、BD交于点O点O是ABCD的对称中心EOFO,GOHO四边形EGFH是平行四边形(2)菱形 (3)菱形(4)四边形EGFH是正方形 证明:ACBD,ABCD是矩形 又ACBD, ABCD是菱形ABCD是正方形

6、,BOC90,GBOFCO45OBOCEFGH ,GOF90BOGCOFBOGCOFOGOF,GHEF 由(1)知四边形EGFH是平行四边形,又EFGH,EFGH四边形EGFH是正方形 温馨提示:本题是探索题属于思维创新型试题,也是课本习题的引申,体现了中考题与课本的紧密联系,但又不拘泥于课本原题,做了一定的提炼,重点考查了特殊四边形的判定,所以在备考时抓住课本是中考复习的一个突破口跟踪练习:1顺次连接等腰梯形各边的中点所得的四边形是()A菱形B正方形C矩形D等腰梯形2如图,顺次连结四边形ABCD各中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )AABDC BABDC CA

7、CBD DACBD3四边形为边长等于1的菱形,顺次连结它的各边中点组成四边形(四边形称为原四边形的中点四边形),再顺次连结四边形的各边中点组成第二个中点四边形,则按上述规律组成的第八个中点四边形的边长等于 4观察探究,完成证明和填空如图,四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,顺次连接E、F、G、H,得到的四边形EFGH叫中点四边形(1)求证:四边形EFGH是平行四边形;(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是;当四边形ABCD变成矩形时,它的中点四边形是;当四边形ABCD变成菱形时,它的中点四边形是;当四边形ABCD变成正方形时,它的中点四边形是;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?- 5 -

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服