资源描述
房县2013年中考复习题块专题二《圆的有关问题》
第1题图)
1、如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B’,则图中阴影部分的面积是__________
2、如图,△ABC是等腰直角三角形,∠ACB=90°,AB=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB’C’,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是 (结果保留根号)
3、如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 _______(结果保留π).
4、已知半径为1cm的圆,在下面三个图中AC=10cm,AB=6cm,BC=8cm,在图2中∠ABC=90°.
(l)如图1,若将圆心由点A沿AC方向运动到点C,求圆扫过的区域面积;
(2)如图2,若将圆心由点A沿ABC方向运动到点C,求圆扫过的区域面积;
(3)如图3,若将圆心由点A沿ABCA方向运动回到点A.
则I)阴影部分面积为_ ___;Ⅱ)圆扫过的区域面积为__ __.
5、如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD
(1)求证:AE平分∠DAC;
(2)若AB=3,∠ABE=60°,
①求AD的长;②求出图中阴影部分的面积。
6、如图,为上一点,点在直径的延长线上,.
(1)求证:是的切线;
(第6题图)
A
B
C
D
E
O
(2)过点作的切线交的延长线于点,若,求的长.
7、如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且
∠AED=45°
(1)判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为6cm,AE=10cm,求∠ADE的正弦值。
8、如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC与点D.
(1)如果BE=15,CE=9,求EF的长;
(2)证明:①△CDF∽△BAF;②CD=CE;
(3)探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
9、如图,点A,E是半圆周上的三等分点,直径BC=2,,垂足为D,连接BE交AD于F,过A作∥BE交BC于G.
(1)判断直线AG与⊙O的位置关系,并说明理由.
A
B
C
E
D
F
G
O
(2)求线段AF的长.
10、如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF,OD,OP之间的等量关系,并加以证明;
A
C
B
D
E
F
O
P
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
11、图,已知直角梯形ABCD,∠B=90°,AD∥BC,并且AD+BC=CD,O为AB的中点.
(1)求证:以AB为直径的⊙O与斜腰CD相切;
(2)若OC=8cm,OD=6cm,求CD的长.
12、如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3) 在(2)的条件下,若sinE=,AK=,求FG的长.
展开阅读全文