1、第十二章 全等三角形单元检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.下列说法正确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等C.完全重合的两个三角形全等 D.所有的等边三角形全等2. 如图所示,分别表示ABC的三边长,则下面与一定全等的三角形是()第2题图 A B第3题图 C D3.如图所示,已知ABEACD,1=2,B=C,下列不正确的等式是()A.AB=AC B.BAE=CAD C.BE=DC D.AD=DE4. 在ABC和中,AB=,B=,补充条件后仍不一定能保证ABC,则补充的这个条件是( ) ABC= BA= CAC
2、= DC=5.如图所示,点B、C、E在同一条直线上,ABC与CDE都是等边三角形,则下列结论不一定成立的是()A.ACEBCD B.BGCAFC 第6题图C.DCGECF D.ADBCEA第5题图6. 要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),可以说明,得,因此测得的长就是的长,判定最恰当的理由是()第7题图A.边角边 B.角边角 C.边边边 D.边边角7.已知:如图所示,AC=CD,B=E=90,ACCD,则不正确的结论是()AA与D互为余角 BA=2 CABCCED D1=28. 在和FED 中,已知C=D,B=E,要判定这两个三角形全
3、等,还需要条件( )A.AB=ED B.AB=FD C.AC=FD D.A=F 9.如图所示,在ABC中,AB=AC,ABC、ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E某同学分析图形后得出以下结论:BCDCBE;BADBCD;BDACEA;BOECOD;ACEBCE,上述结论一定正确的是()A. B. C. D.第10题图第9题图10. 如图所示,在中,=,点在边上,连接,则添加下列哪一个条件后,仍无法判定与全等() A. B. C.= D.=二、填空题(每小题3分,共24分)11. 如果ABC和DEF这两个三角形全等,点C和点E,点B和点分别是对应点,则另一组对
4、应点是 ,对应边是 ,对应角是 ,表示这两个三角形全等的式子是 . 12. 如图,在ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是 .13. 如图为6个边长相等的正方形的组合图形,则1+2+3= .第15题图第14题图第13题图14.如图所示,已知等边ABC中,BD=CE,AD与BE相交于点P,则APE是 度. 15.如图所示,AB=AC,AD=AE,BAC=DAE,1=25,2=30,则3= . 第17题图16.如图所示,在ABC中,C=90,AD平分CAB,BC=8 cm,BD=5 cm,那么点D到直线AB的距离是 cm.第16题图17.如图所示,已知ABC的周长是21,O
5、B,OC分别平分ABC和ACB,ODBC于D,且OD=3,则ABC的面积是 18. 如图所示,已知在ABC中,A=90,AB=AC,CD平分ACB,DEBC于E,若BC=15 cm,则DEB的周长为 cm三、解答题(共46分)19.(6分)如图,已知是对应角(1)写出相等的线段与相等的角;(2)若EF=2.1 cm,FH=1.1 cm,HM=3.3 cm,求MN和HG的长度.第20题图第19题图第21题图20. (8分)如图所示,ABCADE,且CAD=10,B=D=25,EAB=120,求DFB和DGB的度数21.(6分)如图所示,已知AEAB,AFAC,AE=AB,AF=AC.求证:(1)
6、EC=BF;(2)ECBF.22. (8分) 如图所示,在ABC中,C=90, AD是 BAC的平分线,DEAB交AB于E,F在AC上,BD=DF.证明:(1)CF=EB(2)AB=AF+2EB 第23题图第22题图23. (9分)如图所示,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.求证:AF平分BAC.24. (9分) 已知:在ABC中,AC=BC,ACB=90,点D是AB的中点,点E是AB边上一点(1)直线BF垂直于直线CE于点F,交CD于点G(如图),求证:AE=CG;(2)直线AH垂直于直线CE,垂足为点 H,交CD的延长线于点M(如图),找出图中与BE相
7、等的线段,并证明第24题图第十二章 全等三角形检测题参考答案1. C 解析:能够完全重合的两个三角形全等,全等三角形的大小相等且形状相同,形状相同的两个三角形相似,但不一定全等,故A错;面积相等的两个三角形形状和大小都不一定相同,故B错;所有的等边三角形不全等,故D错.2. B 解析:A.与三角形有两边相等,而夹角不一定相等,二者不一定全等;B.与三角形有两边及其夹角相等,二者全等;C.与三角形有两边相等,但夹角不相等,二者不全等;D.与三角形有两角相等,但夹边不对应相等,二者不全等故选B 3. D 解析: ABEACD,1=2,B=C, AB=AC,BAE=CAD,BE=DC,AD=AE,故
8、A、B、C正确;AD的对应边是AE而非DE,所以D错误故选D4. C 解析:选项A满足三角形全等的判定条件中的边角边,选项B满足三角形全等的判定条件中的角边角,选项D满足三角形全等的判定条件中的角角边,只有选项C 不满足三角形全等的条件.5. D 解析: ABC和CDE都是等边三角形, BC=AC,CE=CD,BCA=ECD=60, BCA+ACD=ECD+ACD,即BCD=ACE, 在BCD和ACE中, BCDACE(SAS),故A成立. BCDACE, DBC=CAE. BCA=ECD=60, ACD=60.在BGC和AFC中, BGCAFC,故B成立. BCDACE, CDB=CEA,在
9、DCG和ECF中, DCGECF,故C成立.6. B 解析: BFAB,DEBD, ABC=BDE.又 CD=BC,ACB=DCE, EDCABC(ASA).故选B7. D 解析: ACCD, 1+2=90, B=90, 1+A=90, A=2. 在ABC和CED中, ABCCED,故B、C选项正确. 2+D=90, A+D=90,故A选项正确. ACCD, ACD=90,1+2=90,故D选项错误故选D8. C 解析:因为C=D,B=E,所以点C与点D,点B与点E,点A与点F是对应顶点,AB的对应边应是FE,AC的对应边应是FD,根据AAS,当AC=FD时,有ABCFED.9. D 解析:
10、AB=AC, ABC=ACB BD平分ABC,CE平分ACB, ABD=CBD=ACE=BCE BCDCBE (ASA);由可得CE=BD, BE=CD, BDACEA (SAS);又EOB=DOC,所以BOECOD (AAS)故选D.10. C 解析:A. , =. =. , ,故本选项可以证出全等;B. =,=, ,故本选项可以证出全等;C.由=证不出,故本选项不可以证出全等;D. =,=, ,故本选项可以证出全等故选C11. 点A与点FAB与FD,BC与DE,AC与FE A=F,C=E,B=D ABCFDE 解析:利用全等三角形的表示方法并结合对应点写在对应的位置上写出对应边和对应角.
11、12. 第13题答图 13. 135 解析:观察图形可知:ABCBDE, 1=DBE.又 DBE+3=90, 1+3=90 2=45, 1+2+3=1+3+2=90+45=13514. 60 解析: ABC是等边三角形, ABD=C,AB=BC. BD=CE, ABDBCE, BAD=CBE. ABE+EBC=60, ABE+BAD=60, APE=ABE+BAD=6015. 55 解析:在ABD与ACE中, 1+CAD=CAE +CAD, 1=CAE.又 AB=AC,AD=AE, ABD ACE(SAS). 2=ABD. 3=1+ABD=1+2,1=25,2=30, 3=5516. 3 解析
12、:由C=90,AD平分CAB,作DEAB于E,所以D点到直线AB的距离是DE的长.由角平分线的性质可知DE=DC.又BC=8 cm,BD=5 cm,所以DE=DC=3 cm所以点D到直线AB的距离是3 cm第16题答图第17题答图17. 31.5 解析:作OEAC,OFAB,垂足分别为E、F,连接OA, OB,OC分别平分ABC和ACB,ODBC, OD=OE=OF. =ODBC+OEAC+OFAB=OD(BC+AC+AB)=321=31.518. 15 解析:因为CD平分ACB,A=90,DEBC,所以ACD=ECD,CD=CD,DAC=DEC,所以ADCEDC,所以AD=DE, AC=EC
13、,所以DEB的周长=BD+DE+BE=BD+AD+BE.又因为AB=AC,所以DEB的周长=AB+BE=AC+BE=EC+BE=BC=15(cm). 19. 分析:(1)根据是对应角可得到两个三角形中对应相等的三条边和三个角;(2)根据(1)中的相等关系即可得的长度解:(1)因为是对应角,所以.因为GH是公共边,所以.(2)因为2.1 cm,所以=2.1 cm.因为3.3 cm,所以.20. 分析:由ABCADE,可得DAE=BAC=(EAB-CAD),根据三角形外角性质可得DFB=FAB+B.因为FAB=FAC+CAB,即可求得DFB的度数;根据三角形外角性质可得DGB=DFB -D,即可得
14、DGB的度数解: ABCADE, DAE=BAC=(EAB-CAD)= DFB=FAB+B=FAC+CAB+B=10+55+25=90,DGB=DFB-D=90-25=6521. 分析:首先根据角间的关系推出再根据边角边定理,证明最后根据全等三角形的性质定理,得知根据角的转换可求出.证明:(1)因为 ,所以.又因为在与中,所以. 所以.(2)因为,所以,即22. 分析:(1)根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离,即CD=DE再根据RtCDFRtEDB,得CF=EB.(2)利用角平分线性质证明ADCADE, AC=AE,再将线段AB进行
15、转化证明:(1) AD是BAC的平分线,DEAB,DCAC, DE=DC又 BD=DF, RtCDFRtEDB(HL), CF=EB.(2) AD是BAC的平分线,DEAB,DCAC, ADCADE, AC=AE, AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB23. 证明: DBAC ,CEAB, AEC=ADB=90. 在ACE与ABD中, ACEABD (AAS), AD=AE. 在RtAEF与RtADF中, RtAEFRtADF(HL), EAF=DAF, AF平分BAC.24. 解:因为直线BF垂直于CE于点F,所以CFB=90,所以ECB+CBF=90.又因为ACE +ECB=90,所以ACE =CBF.因为AC=BC, ACB=90,所以A=CBA=45.又因为点D是AB的中点,所以DCB=45.因为ACE =CBF,DCB=A,AC=BC,所以CAEBCG,所以AE=CG.(2)BE=CM.证明: ACB=90, ACH +BCF=90. CHAM,即CHA=90, ACH +CAH=90, BCF=CAH. CD为等腰直角三角形斜边上的中线, CD=AD. ACD=45.CAM与BCE中,BC=CA ,BCF=CAH,CBE=ACM, CAM BCE, BE=CM.