1、2. ( 2014广西玉林市、防城港市,第12题3分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()ABCD考点:动点问题的函数图象分析:根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状解答:解:t1时,两个三角形重叠面积为小三角形的面积,y=1=,当1x2时,重叠三角形的边长为2x,高为,y=(2x)=xx+,当x2时两个三角形重叠面积为小三角形的面积为0,故选:B点评:本题主要考查了本题考查了动点问题的函数图象,此
2、类题目的图象往往是几个函数的组合体3(2014年山东泰安,第14题3分)如图,ABC中,ACB=90,A=30,AB=16点P是斜边AB上一点过点P作PQAB,垂足为P,交边AC(或边CB)于点Q,设AP=x,APQ的面积为y,则y与x之间的函数图象大致为()ABCD分析:分点Q在AC上和BC上两种情况进行讨论即可解:当点Q在AC上时,A=30,AP=x,PQ=xtan30=y=APPQ=x=x2;当点Q在BC上时,如图所示:AP=x,AB=16,A=30,BP=16x,B=60,PQ=BPtan60=(16x)=该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下故选:B点评:本题
3、考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况4.(2014菏泽第8题3分)如图,RtABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )来源:学科网ABCD考点:动点问题的函数图象专题:数形结合分析:分类讨论:当0x1时,根据正方形的面积公式得到y=x2;当1x2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x22(x1)2,配方得到y=(x2)2+2,然后根据二次
4、函数的性质对各选项进行判断解答:解:当0x1时,y=x2,当1x2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2x,RtABC中,AC=BC=2,ADM为等腰直角三角形,DM=2x,EM=x(2x)=2x2,SENM=(2x2)2=2(x1)2,y=x22(x1)2=x2+4x2=(x2)2+2,y=,故选A7. (2014扬州,第28题,12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA若=,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求OAB的度数;(3)如图2,
5、擦去折痕AO、线段OP,连结BP动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作MEBP于点E试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度考点:相似形综合题;全等三角形的判定与性质;等腰三角形的判定与性质;勾股定理;矩形的性质;特殊角的三角函数值专题:综合题;动点型;探究型分析:来源:学_科_网(1)只需证明两对对应角分别相等即可证到两个三角形相似,然后根据相似三角形的性质求出PC长以及AP与OP的关系,然后在RtPCO中运用勾股定理求出OP长,从而求出AB长(2)由DP=DC
6、=AB=AP及D=90,利用三角函数即可求出DAP的度数,进而求出OAB的度数(3)由边相等常常联想到全等,但BN与PM所在的三角形并不全等,且这两条线段的位置很不协调,可通过作平行线构造全等,然后运用三角形全等及等腰三角形的性质即可推出EF是PB的一半,只需求出PB长就可以求出EF长解答:解:(1)如图1,四边形ABCD是矩形,AD=BC,DC=AB,DAB=B=C=D=90由折叠可得:AP=AB,PO=BO,PAO=BAOAPO=BAPO=90APD=90CPO=POCD=C,APD=POCOCPPDAOCP与PDA的面积比为1:4,=PD=2OC,PA=2OP,DA=2CPAD=8,CP
7、=4,BC=8设OP=x,则OB=x,CO=8x在RtPCO中,C=90,CP=4,OP=x,CO=8x,x2=(8x)2+42解得:x=5来源:学。科。网Z。X。X。KAB=AP=2OP=10边AB的长为10(2)如图1,P是CD边的中点,来源:学#科#网Z#X#X#KDP=DCDC=AB,AB=AP,DP=APD=90,sinDAP=DAP=30DAB=90,PAO=BAO,DAP=30,OAB=30OAB的度数为30(3)作MQAN,交PB于点Q,如图2AP=AB,MQAN,APB=ABP,ABP=MQPAPB=MQPMP=MQMP=MQ,MEPQ,PE=EQ=PQBN=PM,MP=MQ
8、,BN=QMMQAN,QMF=BNF在MFQ和NFB中,MFQNFBQF=BFQF=QBEF=EQ+QF=PQ+QB=PB由(1)中的结论可得:PC=4,BC=8,C=90PB=4EF=PB=2在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,长度为2点评:本题是一道运动变化类的题目,考查了相似三角形的性质和判定、全等三角形的性质和判定、矩形的性质、等腰三角形的性质和判定、勾股定理、特殊角的三角函数值等知识,综合性比较强,而添加适当的辅助线是解决最后一个问题的关键【题6】(2014杭州第22题)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向
9、点D运动,PFAB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值【考点】:四边形综合题;菱形的性质;轴对称的性质;轴对称图形;特殊角的三角函数值【专题】:综合题;动点型;分类讨论来源:学&科&网【分析】:(1)根据对称性确定E、F、G、H都在菱形的边上,由于点P在BO上与点P在OD上求S1和S2的方法不同,因此需分情况讨论(2)由S1=S2和S1+S2=8可以求出S1=S2=4然后在两种情况下分别建立关于x的方程
10、,解方程,结合不同情况下x的范围确定x的值【解答】:解:(1)当点P在BO上时,如图1所示四边形ABCD是菱形,AC=4,BD=4,ACBD,BO=BD=2,AO=AC=2,且S菱形ABCD=BDAC=8tanABO=ABO=60在RtBFP中,BFP=90,FBP=60,BP=x,sinFBP=sin60=FP=xBF=四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,SBFP=SBGP=SDEQ=SDHQS1=4SBFP=4x=S2=8当点P在OD上时,如图2所示AB=4,BF=,AF=ABBF=4在RtAFM中,AFM=90,FAM=30,AF=4tanFAM=ta
11、n30=FM=(4)SAFM=AFFM=(4)(4)=(4)2四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称,SAFM=SAEM=SCHN=SCGNS2=4SAFM=4(4)2=(x8)2S1=8S2=8(x8)2综上所述:当点P在BO上时,S1=,S2=8;当点P在OD上时,S1=8(x8)2,S2=(x8)2(2)当点P在BO上时,0x2S1=S2,S1+S2=8,S1=4S1=4解得:x1=2,x2=222,20,当点P在BO上时,S1=S2的情况不存在当点P在OD上时,2x4S1=S2,S1+S2=8,S2=4S2=(x8)2=4解得:x1=8+2,x2=828
12、+24,2824,x=82综上所述:若S1=S2,则x的值为82【点评】:本题考查了以菱形为背景的轴对称及轴对称图形的相关知识,考查了菱形的性质、特殊角的三角函数值等知识,还考查了分类讨论的思想【题1】(2014年山东烟台第25题)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动(1)如图,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图,当E,F分别在边
13、CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD=2,试求出线段CP的最小值【分析】:(1)AE=DF,AEDF先证得ADEDCF由全等三角形的性质得AE=DF,DAE=CDF,再由等角的余角相等可得AEDF;(2)是四边形ABCD是正方形,所以AD=DC,ADE=DCF=90,DE=CF,所以ADEDCF,于是AE=DF,DAE=CDF,因为CDF+ADF=90,DAE+ADF=90,所以AEDF;(3)成立由(1)同
14、理可证AE=DF,DAE=CDF,延长FD交AE于点G,再由等角的余角相等可得AEDF;(4)由于点P在运动中保持APD=90,所以点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,再由勾股定理可得OC的长,再求CP即可【解答】解:(1)AE=DF,AEDF理由:四边形ABCD是正方形,AD=DC,ADC=C=90DE=CF,ADEDCFAE=DF,DAE=CDF,由于CDF+ADF=90,DAE+ADF=90AEDF;(2)是;(3)成立理由:由(1)同理可证AE=DF,DAE=CDF延长FD交AE于点G,则CDF+ADG=90,ADG+DAE=90AEDF;(4)如图:由于点P在运动中保持APD=90,点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在RtODC中,OC=,CP=OCOP=【点评】:本题主要考查了四边形的综合知识综合性较强,特别是第(4)题要认真分析