资源描述
动点问题训练 姓名________
所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.
关键:动中求静.
数学思想:分类思想 数形结合思想 转化思想
1、如图1,梯形ABCD中,AD∥ BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6
当t= 时,四边形是等腰梯形. 8
2、如图,已知中,厘米,厘米,点为的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动
①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?
A
Q
C
D
B
P
(2) 若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?
解:(1)①∵秒, ∴厘米,
∵厘米,点为的中点, ∴厘米.
又∵厘米, ∴厘米, ∴.
又∵, ∴, ∴.
②∵, ∴, 又∵,,则,
∴点,点运动的时间秒, ∴厘米/秒。
(2)设经过秒后点与点第一次相遇, 由题意,得,解得秒.
∴点共运动了厘米. ∵,∴点、点在边上相遇,
∴经过秒点与点第一次在边上相遇.
3、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平分线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
A
D
F
C
G
E
B
图1
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
解:(1)正确.
A
D
F
C
G
E
B
M
证明:在上取一点,使,连接.
.,.
是外角平分线,,.
.
A
D
F
C
G
E
B
图2
,,
. (ASA). .
(2)正确.
证明:在的延长线上取一点.使,连接.
A
D
F
C
G
E
B
图3
A
D
F
C
G
E
B
N
. .
四边形是正方形, .
. .
(ASA)..
A
C
B
E
D
N
M
图3
A
B
C
D
E
M
N
图2
4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.
C
B
A
E
D
图1
N
M
(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.
解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90°
∴∠CAD=∠BCE ∵AC=BC ∴△ADC≌△CEB
② ∵△ADC≌△CEB ∴CE=AD,CD=BE ∴DE=CE+CD=AD+BE
(2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC
∴△ACD≌△CBE ∴CE=AD,CD=BE ∴DE=CE-CD=AD-BE
(3) 当MN旋转到图3的位置时,DE=BE-AD(或AD=BE-DE,BE=AD+DE等)
∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE, 又∵AC=BC,
∴△ACD≌△CBE, ∴AD=CE,CD=BE, ∴DE=CD-CE=BE-AD.
5、如图1,在等腰梯形中,,是的中点,过点作交于点.,.求:(1)求点到的距离;
(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.
①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;
②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由
A
D
E
B
F
C
图4(备用)
A
D
E
B
F
C
图5(备用)
A
D
E
B
F
C
图1
图2
A
D
E
B
F
C
P
N
M
图3
A
D
E
B
F
C
P
N
M
(第25题)
解(1)如图1,过点作于点 ∵为的中点,
∴在中, ∴ ∴
图1
A
D
E
B
F
C
G
即点到的距离为
(2)①当点在线段上运动时,的形状不发生改变.
∵ ∴
∵ ∴, 同理
如图2,过点作于,∵
图2
A
D
E
B
F
C
P
N
M
G
H
∴ ∴
∴ 则
在中,
∴的周长=
②当点在线段上运动时,的形状发生改变,但恒为等边三角形.
当时,如图3,作于,则
类似①, ∴ ∵是等边三角形,∴
此时,
图3
A
D
E
B
F
C
P
N
M
图4
A
D
E
B
F
C
P
M
N
图5
A
D
E
B
F(P)
C
M
N
G
G
R
G
当时,如图4,这时
此时,
当时,如图5,
则又
∴ 因此点与重合,为直角三角形.
∴ 此时,
综上所述,当或4或时,为等腰三角形.
练习
1、如图, 射线MB上,MB=9,A是射线MB外一点,AB=5且A到射线MB的距离为3,动点P从M沿射线MB方向以1个单位/秒的速度移动,设P的运动时间为t.
求(1)△ PAB为等腰三角形的t值;(2)△ PAB为直角三角形的t值;
(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB为直角三角形的t值
2、 如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 5
3、如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,求重叠部分⊿AFC的面积.
4、已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.
1、线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;
C
P
Q
B
A
M
N
(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.
5、如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒.
A
D
C
B
M
N
(1)求的长.
(2)当时,求的值.
(3)试探究:为何值时,为等腰三角形.
O
M
A
N
B
C
y
x
6、如图,在平面直角坐标系中,四边形OABC是梯形,OA∥BC,点A的坐标为(6,0),点B的坐标为(4,3),点C在y轴的正半轴上.动点M在OA上运动,从O点出发到A点;动点N在AB上运动,从A点出发到B点.两个动点同时出发,速度都是每秒1个单位长度,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒).
(1)求线段AB的长;当t为何值时,MN∥OC?
(2)设△CMN的面积为S,求S与t之间的函数解析式,
并指出自变量t的取值范围;S是否有最小值?
若有最小值,最小值是多少?
(3)连接AC,那么是否存在这样的t,使MN与AC互相垂直?
若存在,求出这时的t值;若不存在,请说明理由.
7、(河北卷)如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形?
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;
A
P
C
Q
B
D
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.
8、在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份的函数关系式,并写出自变量的取值范围;
(3)当为何值时,为直角三角形。
9、(杭州)在直角梯形中,,高(如图1)。动点同时从点出发,点沿运动到点停止,点沿运动到点停止,两点运动时的速度都是。而当点到达点时,点正好到达点。设同时从点出发,经过的时间为时,的面积为(如图2)。分别以为横、纵坐标建立直角坐标系,已知点在边上从到运动时,与的函数图象是图3中的线段。
(1)分别求出梯形中的长度;
(2)写出图3中两点的坐标;
(3)分别写出点在边上和边上运动时,与的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中关于的函数关系的大致图象。
(图2)
(图3)
(图1)
10、(金华)如图1,在平面直角坐标系中,已知点,点在正半轴上,且.动点在线段上从点向点以每秒个单位的速度运动,设运动时间为秒.在轴上取两点作等边.
(1)求直线的解析式;
(2)求等边的边长(用的代数式表示),并求出当等边的顶点运动到与原点重合时的值;
(3)如果取的中点,以为边在内部作如图2所示的矩形,点在线段上.设等边和矩形重叠部分的面积为,请求出当秒时与的函数关系式,并求出的最大值.
(图1)
(图2)
11、两块完全相同的直角三角板ABC和DEF如图1所示放置,点C、F重合,且BC、DF在一条直线上,其中AC=DF=4,BC=EF=3.固定Rt△ABC不动,让Rt△DEF沿CB向左平移,直到点F和点B重合为止.设FC=x,两个三角形重叠阴影部分的面积为y.
(1)如图2,求当x=时,y的值是多少?
(2)如图3,当点E移动到AB上时,求x、y的值;
(3)求y与x之间的函数关系式;
12、如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成和两个三角形(如图2所示).将纸片沿直线(AB)方向平移(点始终在同一直线上),当点于点B重合时,停止平移.在平移过程中,与交于点E,与分别交于点F、P.
(1)当平移到如图3所示的位置时,猜想图中的与的数量关系,并证明你的猜想;
(2)设平移距离为,与重叠部分面积为,请写出与的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的的值;使得重叠部分的面积等于原面积的?若不存在,请说明理由.
图1
图3
图2
13、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的
关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
13
展开阅读全文