1、“四标”课堂教学导学案(数学) 日期:2015年3月18日主备:徐斌 授课:万晓斌 朱平均 柳高稳 审阅:6.2立方根(2)一、学习目标(树标)1、 进一步了解立方根的概念,熟练运用用根号表示一个数的立方根. (重点)2、进一步了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.3、进一步体会一个数的立方根的惟一性, 分清一个数的立方根与平方根的区别。(难点)二、自主合作做、展示点拨(学标+解标)(一 )复习1. 立方根及开立方的概念2. 平方根与立方根有什么不同?被开方数平方根立方根正数负数零3、(1) 64的平方根是_立方根是_. (2) 的立方根是_. (3) 是_的立方根. (4
2、) 若 ,则 x=_, 若 ,则 x=_. (5) 若 , 则x的取值范围是_(二)小组合作讨论探究1、完成教科书78页探究,总结规律求负数的立方根,可以先求出这个负数的 的立方根,再取其 ,即 思考:立方根是它本身的数是 ,平方根是它本身的数是 2、一些计算机设有 键,用它可以求出一个立方根(或其近似值)。有些计算器需要用 键求一个数的立方根。(三)例与检测例1、 求下列各式的值:(1); (2) (3); 例2、求满足下列各式的未知数x:(1) 练习1.完成79页练习 2、计算: 3、计算:.(四)讨论小结:求负数的立方根,可以先求出这个负数的 的立方根,再取其 ,即 思考:立方根是它本身
3、的数是 ,平方根是它本身的数是 2、一些计算机设有 键,用它可以求出一个立方根(或其近似值)。有些计算器需要用 键求一个数的立方根。(五)作业 1 3“四标”课堂教学导学案(数学) 日期:2015年3月18日主备:徐斌 授课:万晓斌 朱平均 柳高稳 审阅:63实数(第一课时)一、学习目标:1、了解实数的意义,能对实数按要求进行分类。2、了解实数范围内,相反数、倒数、绝对值的意义。3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。二、重点与难点学习重点:理解实数的概念。学习难点:正确理解实数的概念。三、 教学过程(一)复习准备,出示目标复习1、填空:(有理数的两种分类)有理数 有理数
4、 2、 使用计算器计算,把下列有理数写成小数的形式,你有什么发现? 3 , , , , ,出示目标1、了解实数的意义,能对实数按要求进行分类。2、了解实数范围内,相反数、倒数、绝对值的意义。3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。(二)、自主探究见课件(三)讨论归纳任何一个有理数都可以写成_小数或_小数的形式。反过来,任何_小数或_小数也都是有理数2、 把实数分类 见课件3、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O的坐标是多少?从图中可
5、以看出OO的长时这个圆的周长_,点O的坐标是_这样,无理数可以用数轴上的点表示出来(2)总结 事实上,每一个无理数都可以用数轴上的_表示出来,这就是说,数轴上的点有些表示_,有些表示_当从有理数扩充到实数以后,实数与数轴上的点就是_的,即每一个实数都可以用数轴上的_来表示;反过来,数轴上的_都是表示一个实数 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数_ 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数的相反数是_,这里表示任意_。一个正实数的绝对值是_;一个负实数的绝对值是它的_;0的绝对值是_(四)例题与检测例1、把下
6、列各数分别填入相应的集合里: 正有理数 负有理数 正无理数 负无理数 2、下列实数中是无理数的为( )A. 0 B. C. D. 3、 的相反数是 ,绝对值 4、绝对值等于 的数是 , 的平方是 5、6、求绝对值练习(一)、判断下列说法是否正确:1.实数不是有理数就是无理数。 ( )2.无限小数都是无理数。 ( )3.无理数都是无限小数。 ( )4.带根号的数都是无理数。 ( ) 5.两个无理数之和一定是无理数。 ( )6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。( )(二)、填空1、 2、3、比较大小 4、_(五)课堂小结 这节课你有什么新发现?知道了哪些新知识?
7、无理数的特征:1圆周率及一些含有的数 2开不尽方的数3无限不循环小数注意:带根号的数不一定是无理数(四) 作业1、 把下列各数填入相应的集合内:有理数集合 无理数集合 整数集合 分数集合 实数集合 2、下列各数中,是无理数的是( )A. B. C. D. 3、已知四个命题,正确的有( )有理数与无理数之和是无理数 有理数与无理数之积是无理数无理数与无理数之积是无理数 无理数与无理数之积是无理数A. 1个 B. 2个 C. 3个 D.4个4、若实数满足,则( )A. B. C. D. 5、下列说法正确的有( )不存在绝对值最小的无理数 不存在绝对值最小的实数不存在与本身的算术平方根相等的数 比正
8、实数小的数都是负实数非负实数中最小的数是0A. 2个 B. 3个 C. 4个 D.5个6、的相反数是_ ,绝对值是_ 若,则 _7、是实数,则_ “四标”课堂教学导学案(数学) 日期:2015年3月18日主备:徐斌 授课:万晓斌 朱平均 柳高稳 审阅:6.3实数(第2课时)一、学习目标 1、了解实数范围内,相反数、倒数、绝对值的意义。 2、会按要求用近似有限小数代替无理数,再进行计算。二、重点与难点 重点:在实数内会求一个数的相反数、倒数、绝对值。 难点:简单的无理数计算。三、教学过程 复习准备,出示目标复习准备1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律2、用字母表示有理数的加
9、法交换律和结合律3、有理数的混合运算顺序出示目标1、了解实数范围内,相反数、倒数、绝对值的意义。 2、会按要求用近似有限小数代替无理数,再进行计算。自主探索 见课件(三)讨论归纳当数从有理数扩充到实数以后,1、数a的相反数是 ;2、一个正实数的绝对值是它 ;一个负实数的绝对值是它的 ;0的绝对值是 。3、实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。在进行实数的运算时,有理数的运算法则及运算性质等同样适用。讨论 下列各式错在哪里?1、 2、3、 4、当时,(四)、例题与检测例1、计算下列各式的值:解: 总结 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的练习 (精确到0.01) (结果保留3个有效数字)总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算计算 23 +2 检测1、的相反数是 , 的相反数是2、当时, , 3、已知、在数轴上如图,化简O 6、在两个连续整数和之间,即,那么、的值是 7、计算下列各题 仔细观察上面几道题及其计算结果,你能发现什么规律吗?根据这个规律先写出下面的结果,并说明理由 解得 (五)、课堂小结 1、实数的运算法则及运算律。 2、实数的相反数和绝对值的意义 (六)、作业 练习册