1、第十二讲:一元一次不等式(组)的应用一、能力要求:1能够灵活运用有关一元一次不等式(组)的知识,特别是有关字母系数的不等式(组)的知识解决有关问题。2能够从已知不等式(组)的解集,反过来确定不等式(组)中的字母系数取值范围,具备逆向思维的能力。3能够用分类讨论思想解有关问题。4能利用不等式解决实际问题二、典型例题1m取什么样的负整数时,关于x的方程的解不小于3.分析:解方程得:x=2m+2 由题意:2m+2-3,所以m-2.5 符合条件的m值为-1,-22已知、满足且,求的取值范围. 分析:解方程组 得 代入不等式,解得3比较和的大小(作差法比大小)解:4若方程组 的解为x、y,且2k4,求
2、x-y的取值范围。 分析:用整体代入法更为简单5取怎样的整数时,方程组的解满足.6若2(a-3),求不等式x-a的解集分析:解不等式2(a-3) 得:a由x-a 得(a-5)x-a 因为a 所以a-57阅读下列不等式的解法,按要求解不等式.不等式的解的过程如下:解:根据题意,得或解不等式组,得;解不等式组,得所以原不等式的解为或请你按照上述方法求出不等式的解.分析:典型错误解法:由不等式得: 或所以原不等式的解为或正确解法:由不等式得: 或所以原不等式的解为或8目前使用手机,有两种付款方式,第一种先付入网费,根据手机使用年限,平均每月分摊8元,然后每月必须缴50元的占号费,除此之外,打市话1分
3、钟付费0.4元;第二种方式将储值卡插入手机,不必付入网费和占号费,打市话1分钟0.6元若每月通话时间为分钟,使用第一种和第二种付款方式的电话费分别为和,请算一算,哪种对用户合算解: (1) 若 则 解得:所以当通话时间小于290分钟时,第二种方式合算。(2) 若 则 解得:所以当通话时间等于290分钟时,两种方式相同。(3) 若 则 解得:所以当通话时间大于290分钟时,第一种方式合算。 9某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶,设生产A种饮料x瓶,解答下列问题:(1)有
4、几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低? 原料名称饮料名称甲乙A20克40克B30克20克分析:(1)据题意得: 解不等式组,得 因为其中的正整数解共有21个,所以符合题意的生产方案有21种。(2)由题意得: 整理得: 因为y随x的增大而减小,所以x=40时,成本额最低10某家电生产企业根据市场调查分析决定调整生产方案,准备每周(按120个工时计算)生产空调器,彩电,冰箱共360台,且冰箱至少生产40台,已知生产这些家电产品每台所需工时和每
5、台产值如下表:家电名称空调器彩电冰箱工时(个)产值(万元/台)0.40.30.2 问:每周应生产空调器、彩电、冰箱各多少台,才能使产值最高,最高产值是多少万元?解:设每周应生产空调器、彩电、冰箱分别是台、台、台,设此时的产值为P万元。根据题意得:由(1)和(2)知 (5)把(5)代入(3)得:解得: 要使P最大,只需最小当时P最大1080.0540106(万元)此时(台) (台)答:每周应生产空调器20台、彩电300台、冰箱40台,才能使产值最高,最高产值是106万元?一、【问题引入与归纳】 我国著名数学家华罗庚先生曾经说过:“先从少数的事例中摸索出规律来,再从理论上来证明这一规律的一般性,这
6、是人们认识客观法则的方法之一”。这种以退为进,寻找规律的方法,对我们解某些数学问题有重要指导作用,下面举例说明。 能力训练点:观察、分析、猜想、归纳、抽象、验证的思维能力。二、【典型例题解析】1、 观察算式:按规律填空:1+3+5+99= ?,1+3+5+7+ ?2、如图是某同学在沙滩上用石子摆成的小房子。观察图形的变化规律,写出第个小房子用了多少块石子?3、 用黑、白两种颜色的正六边形地面砖(如图所示)的规律,拼成若干个图案:(1)第3个图案中有白色地面砖多少块?(2)第个图案中有白色地面砖多少块?4、 观察下列一组图形,如图,根据其变化规律,可得第10个图形中三角形的个数为多少?第个图形中
7、三角形的个数为多少?5、 观察右图,回答下列问题:(1)图中的点被线段隔开分成四层,则第一层有1个点,第二层有3个点,第三层有多少个点,第四层有多少个点?(2)如果要你继续画下去,那第五层应该画多少个点,第n层有多少个点?(3)某一层上有77个点,这是第几层?(4)第一层与第二层的和是多少?前三层的和呢?前4层的和呢?你有没有发现什么规律?根据你的推测,前12层的和是多少?6、 读一读:式子“1+2+3+4+5+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可将“1+2+3+4+5+100”表示为,这里“”是求和符号,例如“1+3+5+7+9
8、+99”(即从1开始的100以内的连续奇数的和)可表示为又如“”可表示为,同学们,通过以上材料的阅读,请解答下列问题:(1)2+4+6+8+10+100(即从2开始的100以内的连续偶数的和)用求和符号可表示为 ;(2)计算:= (填写最后的计算结果)。7、 观察下列各式,你会发现什么规律?35=15,而15=42-1 57=35,而35=62-1 1113=143,而143=122-1 将你猜想的规律用只含一个字母的式子表示出来 。8、 请你从右表归纳出计算13+23+33+n3的分式,并算出13+23+33+1003的值。三、【跟踪训练题】1 1、有一列数其中:=62+1,=63+2,=6
9、4+3,=65+4;则第个数= ,当=2001时,= 。2、将正偶数按下表排成5列第1列第2列第3列第4列第5列第一行2468第二行16141210第三行182022242826 根据上面的规律,则2006应在 行 列。3、已知一个数列2,5,9,14,20,35则的值应为:( ) 4、在以下两个数串中:1,3,5,7,1991,1993,1995,1997,1999和1,4,7,10,1990,1993,1996,1999,同时出现在这两个数串中的数的个数共有( )个。A.333 B.334 C.335 D.3363、 学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成
10、一行能坐6人(如右图所示 )按照这种规定填写下表的空格:4、拼成一行的桌子数123n人数466、给出下列算式: 观察上面的算式,你能发现什么规律,用代数式表示这个规律: 7、通过计算探索规律: 152=225可写成1001(1+1)+25 252=625可写成1002(2+1)+25 352=1225可写成1003(3+1)+25 452=2025可写成1004(4+1)+25 752=5625可写成 归纳、猜想得:(10n+5)2= 根据猜想计算:19952= 8、已知,计算:112+122+132+192= ; 9、从古到今,所有数学家总希望找到一个能表示所有质数的公式,有位学者提出:当n是自然数时,代数式n2+n+41所表示的是质数。请验证一下,当n=40时,n2+n+41的值是什么?这位学者结论正确吗?8