资源描述
特殊平行四边形:动点问题
特殊四边形:动点问题
题型一:
1.已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,点P在BC上移动,则当PA+PD取最小值时,△APD中边AP上的高为( )
A、 B、 C、 D、3
2.如图4,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点。点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动。点P停止运动时,点Q也随之停止运动.当运动时间t= 秒时,以点P,Q,E,D为顶点的四边形是平行四边形。
3.如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=,点P是BC边上一动点,设PB长为x。
(1)当x的值为 时,以点P、A、D、E为顶点的四边形为直角梯形.
(2)当x的值为 时,以点P、A、D、E为顶点的四边形为平行四边形。
(3)点P在BC边上运动的过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由。
4.在一个等腰梯形ABCD中,AD//BC,AB=CD,AD=10cm,BC=30cm,动点P从点A开始沿AD边向点D以每秒1cm的速度运动,同时动点Q从点C开始沿CB边向点B以每秒3cm的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.
(1).t为何值时,四边形ABQP为平行四边形?
(2)。四边形ABQP能为等腰梯形吗?如果能,求出t的值,如果不能,请说明理由。
6. 梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动.假设运动时间为t秒,问:
(1)t为何值时,四边形PQCD是平行四边形?
(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?
(3)t为何值时,四边形PQCD是直角梯形?
(4)t为何值时,四边形PQCD是等腰梯形?
(5) t为何值时,APQ是等腰三角形?
7.如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=8cm,DC=10cm。若动点P从点A出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点以每秒5cm的速度沿CB向B点运动。当Q点到达B点时,动点P、Q同时停止运动。设P、Q同时出发,并运动了t秒。
(1)直角梯形ABCD的面积为__________cm的平方。
(2)当t=________秒时,四边形PQCD为平行四边形。
(3)当t=________秒时,PQ=DC
(4)是否存在t,使得P点在线段DC上,且PQ⊥DC(如图2所示)?若存在,列出方程求出此时的t;若不存在,请说明理由.
8.如图,在直角梯形ABCD中,∠B=90°,AB‖CD,且AB=4cm,BC=8cm,DC=10cm。若动点P从点A出发,以每秒1cm的速度沿线段AB、BC向C点运动;动点Q从C点以每秒1cm的速度沿CB向B点运动。当Q点到达B点时,动点P、Q同时停止运动。设P、Q同时出发,并运动了t秒。
(1)直角梯形ABCD的面积为__________cm的平方。
(2)当t=________秒时,四边形PBCQ为平行四边形。
(3)当t=________秒时,PQ=BC。
10. 如图,在等腰梯形ABCD中,AB∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P从开始沿AB边向点B以每秒3cm的速度移动,点Q从开始沿CD边向点D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒.
(1)求证:当t为何值时,四边形APQD是平行四边形;
(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;
(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。
11。如图,在直角梯形ABCD中,AB//CD,∠C=RT∠,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒3cm的速度沿线段AB方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动。已知动点P、Q同时出发,当点Q运动到点C时,P、Q运动停止,设运动时间为t(s).
(1)求CD的长.
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;
(3)在点P,点Q的运动过程中,是否存在某一时刻,使得ΔBPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由。
13. 已知,矩形中,,,的垂直平分线分别交、于点、,垂足为.
(1)如图10—1,连接、。求证四边形为菱形,并求的长;
(2)如图10-2,动点、分别从、两点同时出发,沿和各边匀速运动一周。即点自→→→停止,点自→→→停止。在运动过程中,
①已知点的速度为每秒5,点的速度为每秒4,运动时间为秒,当、、、四点为顶点的四边形是平行四边形时,求的值.
②若点、的运动路程分别为、(单位:,),已知、、、四点为顶点的四边形是平行四边形,求与满足的数量关系式.
图10-1
图10-2
备用图
14.已知:如图,在梯形ABCD中,AB∥DC,∠B=90°,BC=8cm,CD=24cm,AB=26Cm,点P从C出发,以1cm/s的速度向D运动,点Q从A出发,以3cm/s的速度向B运 动,其中一动点达到端点时,另一动点随之停止运动.从运动开始.
(1)经过多少时间,四边形AQPD是平行四边形?
(2)经过多少时间,四边形AQPD成为等腰梯形?
(3)在运动过程中,P、Q、B、C四点有可能构成正方形吗?为什么?
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).
①当t为何值时,四边形PQDC是平行四边形;
②当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?
③是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.
15. 如图,在梯形ABCD中,AD∥BC,AD=6,DC=10,AB=,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长.
(2)当MN∥AB时,求t的值.
(3)△MNC可能为等腰三角形吗?若能,请求出t的值;若不能,请说明理由.
(4) △MNC可能为直角三角形吗?若能,请求出t的值;若不能,请说明理由.
(5) △MNC为20时,请求出t的值.
如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=,AD=4,DC=,点P从点A出发沿折线段AD—DC-CB以每秒3个单位长的速度向点B匀速运动,同时,点Q从点A出发沿射线AB方向以每秒2个单位长的速度匀速运动,当点P与点B重合时停止运动,点Q也随之停止,设点P,Q的运动时间是t秒(t>0).
(1)当点P到达终点B时,求t的值;
(2)设△APQ的面积为S,分别求出点P运动到AD、CD上时,S与t的函数关系式;
(3)当t为何值时,能使PQ∥DB;
(4)当t为何值时,能使P、Q、D、B四点构成的四边形是平行四边形。
16.如图,在等腰梯形ABCD中,AD∥BC,AB=DC=60,AD=75,BC=135.点P从点B出发沿折线段BA—AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD—DA—AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点P运动到AD上时,t为何值能使PQ∥DC;
(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)
(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.
17。如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形?
(3)当t为何值时,射线QN恰好将△ABC的面积平分?并判断此时△ABC的周长是否也被射线QN平分.
19.如图,已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,AB=8,CD=10.
(1)求梯形ABCD的面积S;
(2)动点P从点B出发,以2cm/s的速度、沿B→A→D→C方向,向点C运动;动点Q从点C出发,以2cm/s的速度、沿C→D→A方向,向点A运动.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.
问:①当点P在B→A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值,并判断此时PQ是否平分梯形ABCD的面积;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
20.在直角梯形ABCD中,∠C=90°,高CD=6cm,底BC=10cm(如图1).动点Q从点B出发,沿BC运动到点C停止,运动的速度都是1cm/s.同时,动点P也从B点出发,沿BA→AD运动到点D停止,且PQ始终垂直BC.设P,Q同时从点B出发,运动的时间为t(s),点P运动的路程为y(cm).分别以t,y为横、纵坐标建立直角坐标系(如图2),已知如图中线段为y与t的函数的部分图象.经测量点M与N的坐标分别为(4,5)和(2, ).
(1)求M,N所在直线的解析式;
(2)求梯形ABCD中边AB与AD的长;
(3)写出点P在AD边上运动时,y与t的函数关系式(注明自变量的取值范围),并在图2中补全整运动中y关于t的函数关系的大致图象.
22. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3 ,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);
(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;
已知:如图,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O为原点建立平面直角坐标系,点D为线段BC的中点,动点P从点A出发,以每秒4个单位的速度,沿折线AOCD向终点C运动,运动时间是t秒.
(1)D点的坐标为 ;
(2)当t为何值时,△APD是直角三角形;
(3)如果另有一动点Q,从C点出发,沿折线CBA向终点A以每秒5个单位的速度与P点同时运动,当一点到达终点时,两点均停止运动,问:P、C、Q、A四点围成的四边形的面积能否为28?如果可能,求出对应的t;如果不可能,请说明理由.
在梯形ABCO中,OC∥AB,以O为原点建立平面直角坐标系,A、B、C三点的坐标分别是A(8,0),B(8,10),C(0,4).点D(4,7)为线段BC的中点,动点P从O点出发,以每秒1个单位的速度,沿折线OAB的路线运动,运动时间为t秒.
(1)求直线BC的解析式;
(2)设△OPD的面积为s,求出s与t的函数关系式,并指出自变量t的取值范围;
(3)当t为何值时,△OPD的面积是梯形OABC的面积的?
如图,在直角梯形COAB中,CB∥OA,以O为原点建立直角坐标系,A、C的坐标分别为A(10,0)、C(0,8),CB=4,D为OA中点,动点P自A点出发沿A→B→C→O的线路移动,速度为1个单位/秒,移动时间为t秒.
(1)求AB的长,并求当PD将梯形COAB的周长平分时t的值,并指出此时点P在哪条边上;
(2)动点P在从A到B的移动过程中,设△APD的面积为S,试写出S与t的函数关系式,并指出t的取值范围;
(3)几秒后线段PD将梯形COAB的面积分成1:3的两部分?求出此时点P的坐标?
已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.
(1)求B点坐标;
(2)设运动时间为t秒;
①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;
②当t为何值时,四边形OAMN的面积最小,并求出最小面积;
③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN的长度也刚好最小,求动点P的速度.
如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB向B运动,设运动时间为t.
(1)当t=4秒时,判断四边形COEB是什么样的四边形?
(2)当t为何值时,四边形COEF是直角梯形?
(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值
如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).
(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).
①求当t为多少时,四边形PQAB为平行四边形?
②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式.
(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.
如图,在平面直角坐标系中,直角梯形ABCO的变OC落在x轴的正半轴上,且AB//OC,BC⊥OC,AB=4,BC=7,OC=10.正方形ODEF的两边分别坐落在坐标轴上,且它的面积等于直角梯形ABCO面积,将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO的重叠部分面积为S。
(1) 求正方形ODEF的边长.
(2) 求OA所在直线的解析式
(3) 当正方形ODEF移动到顶点O与C重合时,求S的值
(4) 设正方形ODEF顶点O向右移动的距离为x,当正方形ODEF的边ED与y轴重合时,停止移动,求重叠部分面积S与x的函数关系式.
如图,在△ABC中,∠ACB=90°,AC=BC=6cm,等腰RT△DEF中,∠D=90°,EF=4cm。EF在BC所在直线L上,开始时点F与点C重合,让等腰RT△DEF沿直线L向右以每秒1cm的速度做匀速运动,最后点E和点B重合。
(1) 请直接写出等腰RT△DEF运动6S时与△ABC重叠部分面积
(2) 设运动时间为xS,运动过程中,等腰RT△DEF与△ABC重叠部分面积为ycm²
①在等腰RT△DEF运动6S后至运动停止前这段时间内,求y与x之间的函数关系式
②在RT△DEF整个运动过程中,求当x为何值时,y=1/2。
题型二:
1。如图,正方形ABCD的边长为4cm,两动点P、Q分别同时从D、A出发,以1cm/秒的速度各自沿着DA、AB边向A、B运动。试解答下列各题:
(1)当P出发后多少秒时,三角形PDO为等腰三角形;
(2)当P、Q出发后多少秒,四边形APOQ为正方形;
(3)当P、Q出发后多少秒时,。
2。如图所示,有四个动点P、Q、E、F分别从正方形ABCD的四个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动。
(1)试判断四边形PQEF是正方形并证明.
(2)PE是否总过某一定点,并说明理由。
(3) 四边形PQEF的顶点位于何处时,其面积最小,最大?各是多少?
3。已知:如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点。请你判断:无论E、F怎样移动,当满足:AE+CF=a时,△BEF是什么三角形?并说明你的结论.
4。如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM。
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
E
A D
B C
N
M
⑶ 当AM+BM+CM的最小值为时,求正方形的边长。
题型三:
1.如图,在直角梯形ABCD中,AD//BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒)。
(1) 设▲BPQ的面积为S,求S与t之间的函数关系式;
(2) 当t为何值时,四边形ABPQ平行四边形?
(3)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由。
2。如图①,在等腰梯形ABCD中,AD//BC,AE⊥BC于点E,DE⊥BC于F,AD=2cm,BC=6cm,AE=4cm,点P、Q分别在线段AE、DF上,顺次连接BP、PQ、QC、CB所围的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm²,设EP=xcm,FQ=ycm,解答下列问题:
(1)直接写出当x=3时y的值。
(2)求y与x之间的函数关系式,并写出自变量的取值范围。
(3)当x取何值时,图形M为等腰梯形?图形M为三角形?
(4)直接写出线段PQ在运动过程中所能扫过的区域的面积。
3.在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.
(1)如图25-1,当点M在AB边上时,连接BN.
①求证:;
②若∠ABC = 60°,AM = 4,∠ABN =,求点M到AD的距离及tan的值;
(2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12).
试问:x为何值时,△ADN为等腰三角形.
4.在正方形ABCD中,M是边BC中点,E是边AB上的一个动点,MF⊥ME,MF交射线CD于点F,AB=4,BE=x,CF=y
(1)求y关于x的解析式及定义域
(2)当点F在边CD上时,四边形AEFD的周长是否随点E的运动而发生变化?请说明理由
(3)当DF=1时,求点A到直线EF的距离.
5.如图1,在等腰梯形ABCD中,AD‖BC,E是AB的中点,过点E作EF‖BC交CD于点F。AB=4,BC=6,∠B=60°
(1)求点E到BC的距离。
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于点M,过M作MN‖AB交折线ADC于点N,连接PN,设EP=x。
①当点N在线段AD上时,△PMN的形状是否发生改变?若不变,求出△PMN的周长,若改变,说明理由。
②当点N在线段DC上时,是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值,若不存在,说明理由。
6。在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD。一动点P从A出发以每秒1cm的速度沿A—B-C的路线做匀速运动,过点P做直线PM,使PM⊥AD.当点P运动2秒时,另一动点Q也从A出发沿A—B—C的路线运动,且在AB上以每秒1cm的速度匀速运动,在BC上以每秒2cm的速度匀速运动。过Q做直线QN,使QN∥PM。设点Q的运动时间为t秒(0≤t≤10),直线PM与QN截平行四边形所得图形的面积为S
①求S关于t的函数关系式;
②求S的最大值。
7。菱形ABCD中∠A=60°,边长为4CM,动点P从A出发,以1CM/秒的速度沿A-B-C的路线运动,在点P出发1秒后,点Q以同样的速度,沿同样的路径运动,过点P、Q的直线L1、L2互相平行,且都与AB边所在的直线成60°角,设点P运动的时间是X(1X8)秒,直线L1、L2在菱形上截出的图形周长为Y厘米
(1)求Y与X的函数关系。
(2)当X取何值时,Y的值最大?最大值是多少?
8.如图,在矩形ABCD中,AB=12cm,BC=8cm,点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2).
(1)当t=1秒时,S的值是多少?
(2)写出S和t之间的函数解析式,并指出自变量t的取值范围.
展开阅读全文