收藏 分销(赏)

2010届忠信中学高考复习专题三立体几何专题.doc

上传人:仙人****88 文档编号:5956948 上传时间:2024-11-24 格式:DOC 页数:4 大小:371KB
下载 相关 举报
2010届忠信中学高考复习专题三立体几何专题.doc_第1页
第1页 / 共4页
2010届忠信中学高考复习专题三立体几何专题.doc_第2页
第2页 / 共4页
2010届忠信中学高考复习专题三立体几何专题.doc_第3页
第3页 / 共4页
2010届忠信中学高考复习专题三立体几何专题.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2010届忠信中学高考复习专题三 立体几何专题【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究【考点

2、透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等【例题解析】题型1 空间几何体的三视图以及面积和体积计算例1(2008高考山东卷、2009年福建省理科数学高考样卷第3题)下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是AB CD分析:想像、还原这个空间几何体的构成,利用有关的计算公式解答解析:这个空间几何体是由球和圆柱组成的,圆柱的底面半径是,母线长是,球的半径是,故其表面积是,答案D点评:由三视图还原空间几何体的真

3、实形状时要注意“高平齐、宽相等、长对正”的规则例2(江苏省苏州市2009届高三教学调研测试第12题)已知一个正三棱锥的主视图如图所示,若, ,则此正三棱锥的全面积为_分析:正三棱锥是顶点在底面上的射影是底面正三角形的中心的三棱锥,根据这个主试图知道,主试图的投影方向是面对着这个正三棱锥的一条侧棱,并且和底面三角形的一条边垂直,这样就知道了这个三棱锥的各个棱长解析:这个正三棱锥的底面边长是、高是,故底面正三角形的中心到一个顶点的距离是,故这个正三棱锥的侧棱长是,由此知道这个正三棱锥的侧面也是边长为的正三角形,故其全面积是,答案点评:由空间几何体的一个视图再加上其他条件下给出的问题,对给出的这“一

4、个视图”要仔细辨别投影方向,这是三视图问题的核心题型2 空间点、线、面位置关系的判断例4(江苏苏州市2009届高三教学调研测试7)已知是两条不同的直线,为两个不同的平面,有下列四个命题:若,则;若,则;若,则;若,则其中正确的命题是(填上所有正确命题的序号)_分析:根据空间线面位置关系的判定定理和性质定理逐个作出判断解析:我们借助于长方体模型解决中过直线作平面,可以得到平面所成的二面角为直二面角,如图(1),故正确;的反例如图(2);的反例如图(3);中由可得,过作平面可得与交线平行,由于,故答案点评:新课标的教材对立体几何处理的基本出发点之一就是使用长方体模型,本题就是通过这个模型中提供的空

5、间线面位置关系解决的,在解答立体几何的选择题、填空题时合理地使用这个模型是很有帮助的例5(浙江省2009年高考省教研室第一次抽样测试理科第5题)设是两条不同的直线,是两个不同的平面,下列命题正确的是A若,则 B若则C若,则 D若则分析:借助模型、根据线面位置关系的有关定理逐个进行分析判断解析:对于,结合则可推得答案C点评:从上面几个例子可以看出,这类空间线面位置关系的判断类试题虽然形式上各异,但本质上都是以空间想象、空间线面位置关系的判定和性质定理为目标设计的,主要是考查考生的空间想象能力和对线面位置关系的判定和性质定理掌握的程度题型3 空间平行与垂直关系的证明、空间几何体的有关计算(文科解答

6、题的主要题型)例6(2009江苏泰州期末16)如图所示,在棱长为的正方体中,、分别为、的中点(1)求证:/平面;(2)求证:;(3)求三棱锥的体积分析:第一问就是找平行线,最明显的就是;第二问转化为线面垂直进行证明;第三问采用三棱锥的等积变换解决解:点评:这个题目也属于文科解答题的传统题型空间线面位置关系证明的基本思想是转化,根据线面平行、垂直关系的判定和性质,进行相互之间的转化,如本题第二问是证明线线垂直,但问题不能只局限在线上,要把相关的线归结到某个平面上(或是把与这些线平行的直线归结到某个平面上,通过证明线面的垂直达到证明线线垂直的目的,但证明线面垂直又得借助于线线垂直,在不断的相互转化

7、中达到最终目的立体几何中的三棱柱类似于平面几何中的三角形,可以通过“换顶点”实行等体积变换,这也是求点面距离的基本方法之一例7(江苏省苏州市2009届高三教学调研测试第17题)在四棱锥中,平面,为的中点,(1)求四棱锥的体积;(2)若为的中点,求证平面;(3)求证平面分析:第一问只要求出底面积和高即可;第二问的线面垂直通过线线垂直进行证明;第三问的线面平行即可以通过证明线线平行、利用线面平行的判定定理解决,也可以通过证明面面平行解决,即通过证明直线所在的一个平面和平面的平行解决解: 点评:新课标高考对文科的立体几何与大纲的高考有了诸多的变化一个方面增加了空间几何体的三视图、表面积和体积计算,拓展了命题空间;另一方面删除了三垂线定理、删除了凸多面体的概念、正多面体的概念与性质、球的性质与球面距离,删除了空间向量,这就给立体几何的试题加了诸多的枷锁,由于这个原因课标高考文科的立体几何解答题一般就是空间几何体的体积和表面积的计算、空间线面位置关系的证明(主要是平行与垂直)4

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服